CS 393R - Fall 2013

Lab Introduction

Jake Menashe jmenashe@cs.utexas.edu

Original slides created by Todd Hester, and Katie Genter

Outline

- The Lab: GDC 3.710A
- Website
- Software
- Robots: Aldebaran Nao V4
- Assignment 1
- Lab Rules

My information

- Office hours
 - Mondays, Wednesdays 3:30pm to 5:00pm, appointment
 - GDC 3.710A
- jmenashe@cs.utexas.edu

Lab information

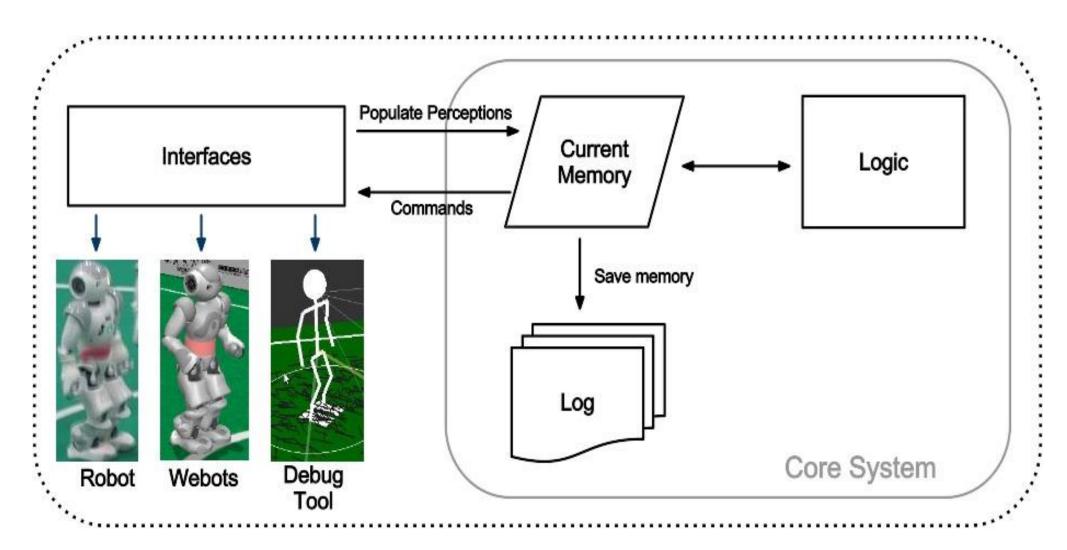
- The lab has 10 workstations + 1 server
- Wireless access to robots through the server
- The server: adler.csres.utexas.edu
 - Avoid using
 - O Do not reboot!!
- Workstations (ie, any machine but luigi)
 - Okay to reboot if needed
 - /home and /usr/local are NFS mounted
- The lab is still being set up.

Lab information

- Machine login
 - Username: your cs user name (____@cs.utexas.edu)
 - If you want a new password, let me know
- Permissions
 - Your directories and files will be readable by classmates by default
 - Your responsibility to change permissions and protect your work

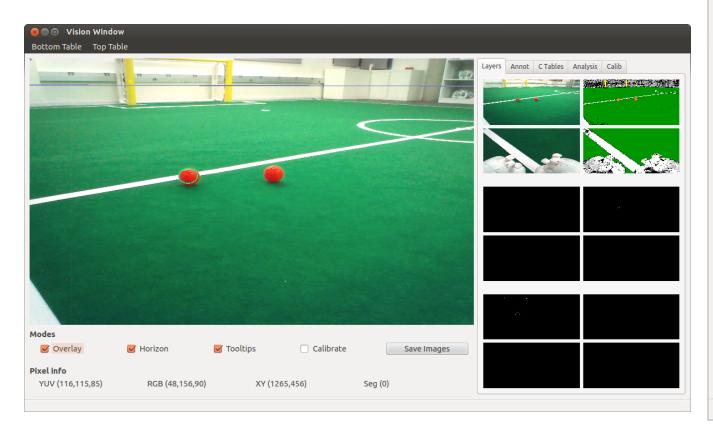
Lab information

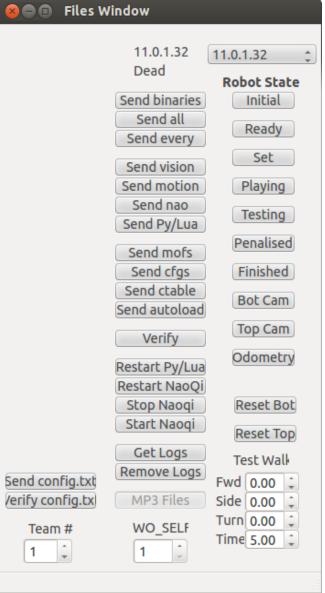
- Lab security
 - Be aware when leaving anything unattended in the lab
 - ONE Never leave the robots unattended!
 - Always lock up your robots when you leave
 - Do not give out the room code to anyone
 - Set the key locker code to 0, 0, 0, 0 when you're done with it
- Let me know of the following issues:
 - Wireless network latency
 - Workstation unavailability
 - Lack of supplies
 - Hardware issues


UT Austin Villa Codebase

- Assignments will use a stripped version of the UT Austin Villa codebase
 - C++ modules
 - Python behaviors
- Contains many built in features you will need:
 - Color image segmentation
 - Pre-programmed walks
 - State machine
- To get started, see webpage resource section for:
 - Nao setup
 - Nao tutorial

UT Austin Villa Architecture


- You will be writing Nao behaviors in Python
- You will be writing vision (and later localization) code in C++
- Behaviors
 - Receive events (sensor signals, buttons, images, etc)
 - Create motion commands (motor commands)
 - Can also create events (state transitions)
- Vision Module
 - Classification is provided
 - Segmentation and detection are not
- Localization Module
 - Framework will be provided
 - Core implementation will not


UT Austin Villa Architecture

UT Austin Villa Tool

- View of camera and segmented image
- Can alter robot game states
- Can view and transfer files and logs

Aldebaran Nao H25

- Multiple Sensors
 - Vision
 - Touch sensors
 - Accelerometers
 - Sonar
- Multiple Effectors
 - Arms/Legs with 5 DOF
 - Head with 2 DOF
 - Pelvis, Hand, LEDs
- 1.6 GHz Intel Atom Processor
- Communication over LAN/WLAN

Robots

- Each team locker contains:
 - One Nao
 - One charger
 - You are responsible for returning these items in working order
- 4 official orange robot soccer balls, two blue goals, and 6 beacons are stored in the lab
- Do not remove any equipment from the lab!

Battery Management

- A battery will last up to 45 minutes depending on its actions
- Each Nao has its own charger
- Keep the Nao charging whenever possible
- The bottom left eye LEDs indicate power. White is good, orange is medium, red is bad.

Robot Care

- Robots are fragile
 - Don't set them on tables or chairs
 - Be aware of where they are at all times
 - Don't step on them or roll your chair into them
 - Don't let them walk into anything repeatedly
 - Don't force the joints to move once stiffness is enabled
- Let me know if you think your robot is broken or breaking

Assignment One Goals

- Establish contact between your machine and the Nao
- Demonstrate you can read the sensors and display them
- Make the Nao move its head and walk
- Get started using color identified through the camera image
- Write a couple of simple control programs
 - Control the Nao's gaze to track the ball
 - Walk towards a blue goal

Assignment One

Worth 1-2 points each:

- Demonstrate the ability to read and display the changing values from the Aibo's sensors as useful data in your program
- Same for camera image
- Demonstrate the ability to detect and track a pink blob in the camera image with the head held still
- Demonstrate that you can control sitting, standing, and headturning
- Demonstrate that you can control walking: forward and turning
- Demonstrate that your Nao can walk in an arc: forward and turning at the same time
- Demonstrate that your Nao can move its head to keep the visible blob from an orange ball near the center of the image
- Demonstrate that your Nao can spot a colored patch in the distance and walk towards that patch until it fills half the camera image, and then stop.

Assignment One

Some hints

- Good blob identification will be an essential aspect of future assignments
- The provided color table should work for most situations, but you may want to specialize it for this room and these assignments
- Read through the Nao Tutorial
- Ask questions!

Assignment One

- You should switch behaviors during your demo to show different things
 - Each checkpoint can be a different script
 - Upload scripts and restart python to switch
- Evaluations are done in person
 - Monday 3:30pm-6pm
 - Tuesday 8am-10:30am
- You will turn in your code and memo
 - By email before class time
 - One email per team

Lab Rules

- Lab environment
- No food or drinks
- Cleanup any mess when you leave.
- Throw away trash in the garbage cans in the hallway.
- Leave the key lock combination at 0,0,0,0
- Keep the lab door locked if you're the last one out

Lab Rules

- Security
 - O Do not leave your robots unattended!
 - Robots can only be used in the lab. They are never allowed to be removed for any reason.
 - If no team members are present, the team's robot must be locked in its locker.
 - Never give your locker key to anyone outside your group.
 - Never tell the door combination to anybody outside of class.
 - Double check that your locker is secure if you are the last of your team to leave.
 - Make sure the lab door locks if you are last to leave.
 - Never give your robotics machine password to anyone.
 - People who are not enrolled in cs393r:
 - May not be in the lab unless a class member accompanies them.
 - May not use any of the lab computers.
 - May not use any of the robots.

Administrative

- Form a team and send me your info if you haven't
 - You will receive a robot, locker, and padlock combination
 - Lockers already contain Nao/Charger

Questions?