
Optimizing Interdependent Skills for
Simulated 3D Humanoid Robot

Soccer

Daniel Urieli, Patrick MacAlpine, Shivaram Kalyanakrishnan,
Yinon Bentor, Peter Stone

UT Austin Villa

The University of Texas at Austin

Goal

Creating and integrating a set of motion skills
for a 3D simulated robot soccer player

Background

• Simspark simulation
• Based on ODE engine
• Robot model: Aldebaran’s Nao
• Message-based interaction with

simulator

• 22 degrees of freedom
• Communication between agents – 20

bytes messages
• A robot is operated by joint torques
• We wrapped it with a PID controller

Contributions

– A skill learning architecture for a
humanoid robot soccer agent
• Fully deployed in Robocup 2010
• Learning rather than hand-coding more

than 100 parameters
• A significant building block in our agent,

which is competitive with top-8 agents of
Robocup 2010

– Sheds light on designing fitness
functions for constraining an
evolutionary learning process

– A new successful application of the
CMA-ES algorithm

The Need for A Learning Architecture

• Skills needed by a soccer playing robot:
Walk-front
Walk-back
Walk-diagonally
Walk-sideways
Turn
Kick
Goalie-dive
More…

• Coding each skill by hand might be tedious and sub-optimal

• On top of it, a skill design need to account for cooperation with other skills
– A robot running full speed forwards need to be able to stop and turn without falling….

• Calls for a skill learning architecture

A Framework for Optimization through
Learning

• Open loop joints control
• Repeatedly execute 4 control frames

Each frame specifies
direct joint angles

SKILL WALK_FRONT

KEYFRAME 1

reset ARM_LEFT ARM_RIGHT …

setTarget JOINT1 $jointvalue1 JOINT2 $jointvalue2

setTarget JOINT3 4.3 JOINT4 52.5

...

wait 0.08

KEYFRAME 2

...
Skills Description Language

Running Massive Amounts of Jobs in
Parallel

• Our framework uniformly implements several evolutionary algorithms for
parameters learning

• Evaluations are done in parallel using Condor (www.cs.wisc.edu/condor) - an open
source software for parallel computing

• Repeatedly:

• A complete learning experiment contains 15,000-50,000 runs
– For instance, 100 generations x 100 population x 5 averaging runs
– Using condor, we run 100 simulations in parallel, 25 seconds per simulation

– Wall clock time is 5-7 hours, for a total CPU time of ~350 hours

Based on the fitness values,
create population of the next
generation

Send to condor for real-time fitness
evaluation of parameters

condor

Parameters-sets
population

Optimizing individual skills

• Goal: optimize the set of joint angles for maximum speed

• A fitness of a set of joint angles:
The agent’s displacement in the desired direction

• Inherently accounts for falls and non-straight walks
• Measured over 15 seconds

• Extensively compared several learning algorithms:
– Hill-Climbing, Cross-Entropy Method, Genetic Algorithm and CMA-ES

CMA-ES learning curve

CMA-ES

• A stochastic, derivative-free, evolutionary numerical optimization
method for non-linear or non-convex problems
• Each generation, candidates are sampled from a multidimensional
Gaussian, and evaluated for their fitness
•Two main principles for parameter adaptation:

• Mean maximizes the likelihood of previously successful
candidates, Covariance maximizes the likelihood of previously
successful search steps (Natural Gradient Decent)
• Evolution paths are recorded and used as an information source

Found out to be extremely effective in our domain

Results – Individual Skills

Front Walk

Back Walk

Kick

Optimizing Sequences of Skills

• Problem: fast locomotion skills, when integrated directly into the
robot, result in frequent falls.

Optimizing Sequences of Skills

• Problem: fast locomotion skills, when integrated directly into the
robot result in frequent falls.

• An example skill execution log (32ms decision cycle):

Skills are interdependent: Learn them together

• Skills dependencies graph:

Idea 1: Optimize skills in conjunction

• Want both speed and stability under these transitions:

• Change the fitness evaluation method:
– Evaluation method should include all skill transitions
– But still reflect how good the currently-learned skill is

• An ideal fitness evaluation: Full Game results
– But too noisy

• An effective alternative:
– The time-to-score on an empty field
– No noise caused by other players
– Robot moves in a realistic scenario of skill

transitions
– Evaluated based on its ultimate objective

A Problem

• So far, optimized under these constraints

• The need to transition smoothly from every skill
to every skill limits our max-speed

• Can we relax some constraints, thus achieving
faster speeds?

Idea 2: Skill Decoupling

• It turns out we can further optimize speed, by
adding additional, less-constrained skills.

Add new skills,
constrained by
only one skill

Putting it all together

Agent A0 –
initial seed

Agent A1 –
WalkFront_S
optimized

Agent A2 –
WalkFront_F
optimized

Agent A3 –
WalkBack_S
optimized

Agent A4 –
WalkBack_F
optimized

Agent A5 –
Decision
thresholds
tuned

A0 vs. A5

A0 A5

Results – Agents Improvements

Full 6x6 game results

Results – Time-To-Score Measure

Results – Full Games

Goal Differential (stderr)

Future Work

• Extend the scope of learning within our agent:

– Waiting times between frames

– Replace hand-coded skills: fine positioning, getting up

– Decision thresholds

• Alternative parameterizations: closed-loop, inverse
kinematics

• Extend to real robots?

Related Work

• N. Hansen. The CMA Evolution Strategy: A Tutorial, January 2009.

• N. Shafii, L. P. Reis, and N. Lao. Biped walking using coronal and
sagittal movements based on truncated Fourier series, January
2010.

• J. E. Pratt. Exploiting Inherent Robustness and Natural Dynamics in
the Control of Bipedal Walking Robots. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, June 2000.

• N. Kohl and P. Stone. Machine learning for fast quadrupedal
locomotion, 2004.

Summary

• We presented a learning architecture for a simulated humanoid
robot soccer player

• Optimized over 100 parameters

• Used 2 ideas for improving speed while maintaining stability:
– Optimizing under constraints
– Skills decoupling

• A main building block in our agent, which is competitive with
Robocup 2010 top-8 teams

• Found a new, successful application for the relatively new, CMA-ES
algorithm

