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Goal

Creating and integrating a set of motion skills 
for a 3D simulated robot soccer player



Background

• Simspark simulation
• Based on ODE engine
• Robot model: Aldebaran’s Nao
• Message-based interaction with 

simulator

• 22 degrees of freedom
• Communication between agents – 20 

bytes messages
• A robot is operated by joint torques
• We wrapped it with a PID controller



Contributions

– A skill learning architecture for a 
humanoid robot soccer agent
• Fully deployed in Robocup 2010
• Learning rather than hand-coding more 

than 100 parameters 
• A significant building block in our agent, 

which is competitive with top-8 agents of 
Robocup 2010

– Sheds light on designing fitness 
functions for constraining an 
evolutionary learning process

– A new successful application of the 
CMA-ES algorithm



The Need for A Learning Architecture

• Skills needed by a soccer playing robot:
Walk-front
Walk-back
Walk-diagonally
Walk-sideways
Turn
Kick
Goalie-dive
More…

• Coding each skill by hand might be tedious and sub-optimal

• On top of it, a skill design need to account for cooperation with other skills
– A robot running full speed forwards need to be able to stop and turn without falling…. 

• Calls for a skill learning architecture



A Framework for Optimization through 
Learning

• Open loop joints control
• Repeatedly execute 4 control frames

Each frame specifies  
direct joint angles

SKILL WALK_FRONT

KEYFRAME 1

reset ARM_LEFT ARM_RIGHT …

setTarget JOINT1 $jointvalue1 JOINT2 $jointvalue2

setTarget JOINT3 4.3 JOINT4 52.5

...

wait 0.08

KEYFRAME 2

...
Skills Description Language



Running Massive Amounts of Jobs in 
Parallel 

• Our framework uniformly implements several evolutionary algorithms for 
parameters learning 

• Evaluations are done in parallel using Condor (www.cs.wisc.edu/condor) - an open 
source software for parallel computing 

• Repeatedly:

• A complete learning experiment contains 15,000-50,000 runs 
– For instance, 100 generations x 100 population x 5 averaging runs
– Using condor, we run  100 simulations in parallel, 25 seconds per simulation

– Wall clock time is 5-7 hours, for a total CPU time of ~350 hours

Based on the fitness values, 
create population of  the next 
generation

Send to condor for real-time fitness 
evaluation of parameters

condor

Parameters-sets
population



Optimizing individual skills

• Goal: optimize the set of joint angles for maximum speed

• A fitness of a set of joint angles:
The agent’s displacement in the desired direction

• Inherently accounts for falls and non-straight walks
• Measured over 15 seconds

• Extensively compared several learning algorithms:
– Hill-Climbing, Cross-Entropy Method, Genetic Algorithm and CMA-ES

CMA-ES learning curve



CMA-ES

• A stochastic, derivative-free, evolutionary numerical optimization 
method for non-linear or non-convex problems
• Each generation, candidates are sampled from a multidimensional 
Gaussian, and evaluated for their fitness
•Two main principles for parameter adaptation:

• Mean maximizes the likelihood of previously successful 
candidates, Covariance maximizes the likelihood of previously 
successful search steps (Natural Gradient Decent)
• Evolution paths are recorded and used as an information source

Found out to be extremely effective in our domain



Results – Individual Skills



Front Walk



Back Walk



Kick



Optimizing Sequences of Skills

• Problem: fast locomotion skills, when integrated directly into the 
robot, result in frequent falls. 



Optimizing Sequences of Skills

• Problem: fast locomotion skills, when integrated directly into the 
robot result in frequent falls.

• An example skill execution log (32ms decision cycle):

Skills are interdependent: Learn them together

• Skills dependencies graph:



Idea 1: Optimize skills in conjunction

• Want both speed and stability under these transitions:

• Change the fitness evaluation method: 
– Evaluation method should include all skill transitions
– But still reflect how good the currently-learned skill is

• An ideal fitness evaluation: Full Game results
– But too noisy

• An effective alternative:
– The time-to-score on an empty field
– No noise caused by other players
– Robot moves in a realistic scenario of skill 

transitions
– Evaluated based on its ultimate objective



A Problem

• So far, optimized under these constraints

• The need to transition smoothly from every skill 
to every skill limits our max-speed

• Can we relax some constraints, thus achieving 
faster speeds?



Idea 2: Skill Decoupling

• It turns out we can further optimize speed, by 
adding additional, less-constrained skills.

Add new skills, 
constrained by 
only one skill



Putting it all together

Agent A0 –
initial seed

Agent A1 –
WalkFront_S
optimized

Agent A2 –
WalkFront_F
optimized

Agent A3 –
WalkBack_S
optimized

Agent A4 –
WalkBack_F
optimized

Agent A5 –
Decision 
thresholds 
tuned



A0 vs. A5

A0 A5



Results – Agents Improvements 

Full 6x6 game results 



Results – Time-To-Score Measure



Results – Full Games

Goal Differential (stderr)



Future Work

• Extend the scope of learning within our agent:

– Waiting times between frames

– Replace hand-coded skills: fine positioning, getting up

– Decision thresholds

• Alternative parameterizations: closed-loop, inverse 
kinematics

• Extend to real robots?
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Summary

• We presented a learning architecture for a simulated humanoid 
robot soccer player

• Optimized over 100 parameters

• Used 2 ideas for improving speed while maintaining stability:
– Optimizing under constraints
– Skills decoupling

• A main building block in our agent, which is competitive with 
Robocup 2010 top-8 teams

• Found a new, successful application for the relatively new, CMA-ES 
algorithm


