

KEY BENEFITS Fully programmable, open and autonomous: make the most of a full integration of state-of-the-art hardware and software Easy to use and understand: achieve better project results and improve learning effectiveness Attractive and motivating: highly increase and catch audience attention USE CASES STEM (Science, Technology, Engineering and Mathematics) training and exercises Scientific researches in autism, personal assistance... Communication tool for events such as opening house days

ENHANCED AUDIO AND VISUAL CAPABILITIES

>> Camera

Thanks to improved camera sensors, we provide higher sensitivity in VGA for better low light perception. For image processing work on the robot CPU, you can use up to 30 images/second in HD resolution. NAO can move the head by 239°horizontally and by 68° vertically, and his camera can see at 61° horizontally and 47°vertically. Result: NAO has a great capacity to sense his environment.

>> Object Recognition

NAO has the capacity to recognize a large quantity of objects. Once the object is saved thanks to Choregraphe software, if he sees it again, NAO is able to recognize and say what it is.

>> Face Detection and Recognition

It's one of the best known features for interaction. NAO can detect and learn a face in order to recognize it next time.

>> Text to Speech

NAO is able to speak up to 9 languages. With a "say box" in Choregraphe you can insert text and modify voice parameters as you wish. NAO will say the text correctly, with the right punctuation and intonation.

>> Automatic Speech Recognition

Speech recognition is at the heart of intuitive humanrobot interaction. That's why we have chosen the best technological partner, Nuance, to develop stable and powerful speech recognition. NAO is now able to hear you from 2 meters away, recognize a complete sentence or just few words in the sentence. Result: more fluidity and natural conversations.

>> Sound Detection and Localization

Our environment is made of sounds that NAO, like us, is able to detect and localize in the space thanks to microphones all around his head.

NATURAL MOTION REFLEXES

>> Smart Stiffness

A unique feature which automatically adapts the power needed by the motors during the movements of the robot. Result: better use of the drive components as well as energy savings for the battery.

>> Fall Manager

NAO may fall, but we taught him how to stand up by himself. We went even further and provided him with a fall detection system: before hitting the ground, NAO protects himself with his arms.

>> Anti Self collision

This motion feature prevents NAO's arms from colliding with the rest of his body. NAO always knows the position of his head, torso, legs and arms: he avoids accidental and unwanted limb collisions.

>> Resource Manager

NAO's biggest challenge is to merge and order conflicting commands. He's able to interrupt/stop or adjust the behavior in progress before executing a new required behavior.

EXAMPLES OF APPLICATIONS

RESEARCH

- >> Human Robot Interaction
- >> Perception & Cognition
- Object Category Recognition & Detection
- >> Modeling Expressive Gestures
- >> Localization & Navigation
- >> Movement Synchronization of Robot
- >> Structure & Motion Analysis
- >> Psychology & Social Robotics
- >> Artificial Intelligence

EDUCATION

- >> Programming
- Math & Physics Concepts for Robotic Applications
- >> Motion Planning
- Introduction to Object/Speech Recognition & Detection
- >> Create Games & Stories
- >> Mechatronics
- >> Automation

REFERENCES

EUROPE

- » Paris Descartes University
- >> University of Bremen
- > University of Hertfordshire
- > University of Jaume
- Science Museum of London
- High School Tech of Nîmes

NORTH AMERICA

- Massachusetts Institute of Technology
- Harvard University
- >> Carnegie Mellon University
- University of Texas, Austin
- Science Museum of Chicago
- » High School Central Tech Erie

ASIA

- >> University of Tokyo
- » Shanghai Jiao Tong University
- National University of Seoul
- » National Taiwan University
- >> New South Wales University
- >> Science Museum of Shanghai

NAU H25

TECHNICAL SPECIFICATIONS

ELECTRICAL

INPUT OUTPUT	100 to 240 Vac - 50/60Hz - Max 1.2A 25.2 Vdc - 2A		
BATTERY	Туре	Lithium-Ion	
	Nominal voltage/capacity	21.6V / 2.15Ah	
	Max charge voltage	24.9V	
	Recommended charge current	2A	

Charging duration

Energy

Autonomy

Max charge/discharge current

CONSTRUCTION

DIMENSION (H×D×W) 573×275×311mm / 22.5x10.8x12.2 inch WEIGHT 5.2kg / 11.4 lb CONSTRUCTION MATERIAL ABS-PC / PA-66 / XCF-30

LANGUAGES

TEXT TO SPEACH	English, French, Spanish, German, Italian, Chinese, Japanese, Korean, Portuguese
AUTOMATIC SPEECH	English, French, Spanish, German,
RECOGNITION	Italian, Chinese, Japanese, Korean

VISION

3.0A / 2.0A 27.6Wh

60min (Active use)

90min (Normal use)

5h

CAMERAS	:	×2 on fron	t		
Sensor mod	el	MT9M114			
Sensor type	:	SOC Image	e Sensor		
IMAGING AR	RAY Res	solution			1.22MP
	Opt	ical forma	ıt		1/6inch
	Act	ive Pixels	(H×V)	1:	288×968
SENSITIVITY	' Pix	el size			1.9µm
	Dyr	namic rang	je		70dB
	Sigi	nal/Noise ra	atio (max)		37dB
	Res	sponsivity		2.24 V/lux-se	c (960p)
				8.96 V/lux-se	ec (VGA)
OUTPUT	Car	nera outp	ut	960	p@30fps
	Dat	a Format			YUV422
	Shu	utter type	ERS (Electronic Rolling	Shutter)
VIEW	Fie	ld of view	72.6°DF	OV (60.9°HFOV, 4	7.6VFOV)
	Foo	us range		30cm -	- infinity
	Foo	cus type		Fixe	ed focus
FRAMERATE	Ξ				
Resolution	Embedded	Gigabit E	thernet	100Mb Ethernet	Wifi g
160×120px	30fps	30f	ps	30fps	30fps

Resolution	Embedded	Gigabit Ethernet	100Mb Ethernet	Wifi g
160×120px	30fps	30fps	30fps	30fps
320×240px	30fps	30fps	30fps	11fps
640×480px	30fps	30fps	12fps	2.5fps
1280×960px	29fps	10fps	3fps	0.5fps

Note: using the video stream in remote highly depends on the network and the video resolution chosen. All frame rates depend on the CPU usage. Values are calculated with a CPU fully dedicated to images gathering.

MOTHER BOARD

CPU PROCESSOR	ATOM Z530	
	Cache memory	512KB
	Clock speed	1.6GHZ
	FSB speed	533mHz
RAM	1GB	
FLASH MEMORY	2GB	
MICRO SDHC	8GB	

CONNECTION

ETHERNET	1×RJ45 - 10/100/1000 BASE T
WIFI	IEEE 802.11b/g

AUDIO

LOUD SPEAKERS	×2 lateral	
	Diameter	36mm
	Impedance	8ohms
	Sp level	87dB/w +/- 3dB
	Freq range	up to ~20kHz
	Input	2W
MICROPHONE	×4 on the head	
	Sensitivity	~40 +/-3dB
	Frequency range	20Hz-20kHz
	Signal/noise ratio	58dBA

TECHNICAL SPECIFICATIONS

IR

NUMBER WAVELENGTH EMISSION ANGLE POWER ×2 on front 940nm +/-60° 8mW/sr

SONAR

EMITTERS	×2 on front
RECEIVERS	×2 on front
FREQUENCY	40kHz
SENSITIVITY	-86dB
RESOLUTION	1cm
DETECTION RANGE	0.25m to 2.55m
EFFECTIVE CONE	60°

INERTIAL UNIT

GYROMETER	×2	
	Axis	1 per gyrometer
	Precision	5%
	Angular speed	~500°/s
ACCELEROMETER	×1	
	Axis	3
	Precision	1%
	Acceleration	~2g

SOFTWARE

OPEN NAO	Embedded GNU/Linux Distribution based on Gentoo
ARCHITECTURE	×86
PROGRAMMING	Embedded: C++ / Python Remote: C++ / Python / .NET / Java / MatLab

CONTACT SENSOR

	H25
Chest Button	\checkmark
Foot Bumper	\checkmark
Tactile Head	\checkmark
Tactile Hand	\checkmark

FSR (FORCE SENSITIVE RESISTORS)

0 to 110N ×4 per feet

POSITION SENSORS

H25			
MRE (Magnetic	×36		
Rotary Encoder)	Using hall effect sensor technology		
	Precision:	12bits / 0.1°	

LEDS

RANGE

PLACEMENT	QUANTITY	DESCRIPTION
Tactile Head	×12	16 Blue levels
Eyes	2×8	RGB FullColor
Ears	2×10	16 Blue levels
Chest button	×1	RGB FullColor
Feet	2×1	RGB FullColor

DEGREES OF FREEDOM

H25
×2 dof
×5 dof
×1 dof
×5 dof
×1 dof

MOTOR SPECIFICATIONS

MOTOR TYPE Brush DC Coreless

POSITION OF MOTORS

		MOTOR	REDUCTION RATIO
HEAD JOINTS	HeadYaw	Туре З	Туре А
	HeadPitch	Туре 3	Type B
ARM JOINTS	ShoulderPitch	Туре З	Туре А
	ShoulderRoll	Туре З	Туре В
	ElbowYaw	Туре З	Туре А
	ElbowRoll	Туре З	Туре В
	WristYaw	Type 2	Туре С
	Hand	Type 2	Type D
LEG JOINTS	HipYawPitch	Type 1	Туре А
	HipRoll	Туре 1	Туре А
	HipPitch	Туре 1	Туре В
	KneePitch	Туре 1	Туре В
	AnklePitch	Туре 1	Туре В
	AnkleRoll	Type 1	Туре А

DESCRIPTION OF THE MOTORS

MOTOR TYPE 1

MOTOR TYPE 2

201.3

50.61

	MOTOR TYPE 1	MOTOR TYPE 2	MOTOR TYPE 3
Model	22NT82213P	17N88208E	16GT83210E
No load speed	8300rpm ±10%	8400rpm ±12%	10700rpm ±10%
Stall torque	68mNm ±8%	9.4mNm ±8%	14.3mNm ±8%
Continuous torque	16.1mNm max	4.9mNm max	6.2mNm max

IX

SPEED REDUCTION RATIO TYPE B MOTOR TYPE 1 MOTOR TYPE 3 Reduction ratio 130.85 173.22 SPEED REDUCTION RATIO TYPE D

	MOTOR TYPE 2
duction ratio	36.24

Re

CERTIFICATIONS & APPROVALS

SPEED REDUCTION RATIO

SPEED REDUCTION RATIO

TYPE A

TYPE C

Reduction ratio

Reduction ratio

REGION Europe USA

SAFETY

CE (Declaration of Conformity) FCC

CLASSIFICATION

ELECTROMAGNETIC COMPATIBILITY

MOTOR TYPE 3

150.27

EN 301 489-1 / EN 301 489-17 / EN 300 328 EN 62311 : 2008 / FCC PART15, Class A IEC 60950-1:2005 (2nd edition)

©2011/2012 Aldebaran Robotics. December 2011. Data are subject to change without notice. HeadYaw [3][A] HeadPitch [3][B]

ShoulderPitch [3][A]

ShoulderRoll [3][B]

ElbowYaw [3][A]
ElbowRoll [3][B]

- HipYawPitch [1][A]

WristYaw [2][C] Hand [2][D]

HipRoll [1][A] HipPitch [1][B]

KneePitch [1][B]

AnklePitch[1][B] AnkleRoll[1][A]

Legend: Joint Name[Motor Type][Reductor Type]