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Vision

Vision

• Vision is our most powerful sense. It provides us with an

enormous amount of information about our environment and

enables us to interact intelligently with the environment, all

without direct physical contact. It is therefore not surprising that

an enormous amount of effort has occurred to give machines a

sense of vision (almost since the beginning of digital computer

technology!)

• Vision is also our most complicated sense. While we can

reconstruct views with high resolution on photographic paper, the

next step of understanding how the brain processes the

information from our eyes is still in its infancy.
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CCDs

• The most common vision sensors are camera that use CCD

(charged couple device) chips.

• A CCD chip is essentially an array of capacitors (around 5-25

microns) that are light sensitive.

• The array is comprised of 20,000 to several million pixels

depending on the resolution.

• On exposure, a photon hits a pixel and releases energy which is

stored until the image is read off the array.

• Usually give 640x480 (or larger) images at 30 Hz (or FPS)
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Grayscale images

These are referred to as grayscale

or gray level images

• Corresponds to achromatic or

monochromatic light

• Light “devoid” of color

• Also results from equal levels

of R-G-B in a color image

• Typically 8-bit unsigned chars

with a dynamic range of

[0,255]
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Image Representation
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RGB Colorspace

• Motivated by human visual system

• 3 color receptor cells (cones) in the retina with different spectral

response curves

• Used in color monitors and most video cameras

• Typically 3 8-bit unsigned chars for each color (R: [0,255],

G:[0,255], B:[0,255])
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Color CCDs

• In normal, inexpensive color cameras, CCD array are divided into

2x2 regions of green, red, and blue receptors.

• Human vision is more responsive to green than red or blue

• Half the pixels in the CCD are allocated to green, a quarter to red

and a quarter to blue

• Color is generated for the whole CCD by interpolating neighbor

values

• The image we get has already undergone a “lossy compression”
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Color CCDs

• In more expensive cameras, there are 3 CCD chips, one that

measures wavelengths of blue light, one for read, and one for

green. green color

• Three images are taken and combined into a single color image
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Vision-based Object Detection

• Color Segmentation

• Edge Detection

• Line/Plane Fitting

• Road Detection

• Object Detection

• Specially trained detectors for specific objects

• Machine Learning Techniques

• Segmented color blobs or objects can be tracked across multiple

frames of video.
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Color Segmentation

• Computationally inexpensive (relative to other features)

• “Unnatural” colors are easy to track: e.g., bright pink

• Combines easily with other features for robust tracking
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Color Segmentation

How do we segment a single color?

• We need to model is mathematically a priori

• In other words, the robot needs models of colors it is looking for in

its memory
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Simple RGB Color Segmentation
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Segmentation Issues

• The approach surrounds the color with a box

• This captures the color, but also many other colors that are not of

interest

• Remember, each POINT represents a unique color
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Alternative Approach

• Bound the color with a three-dimensional solid

• Best color representation

• Requires a 3D lookup table, which for even a 8-bit color depth is

> 16 MB
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Good Results in Static Illumination
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Standard Vision Issues

• Benefits:

• No explicit maximum range

• Passive sensor

• Relatively inexpensive

• Drawbacks:

• Noisy across multiple frames

• Detects blue light more poorly than red and green
• Sensitive to illumination changes / dynamic range

• Color constancy

• Dark illumination yields little information

• Too bright of illumination saturates pixels: causing white images or

blooming (bleeding of energy into neighboring pixels).

• 3D information is lost in 2D projection
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Omnidirectional Cameras

• Omnidirectional Cameras can come in 3 Types
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Omnidirectional Cameras
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Omnidirectional Cameras
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Omnidirectional Cameras
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Stereo Vision

Reclaim some 3D info from two images taken at different locations
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Stereo Vision

The simplified case is an ideal case. It assumes that both cameras are

identical and are aligned on a horizontal axis.

•
−f
z

= −v
y

•
−f
z

= v ′

b−y

• b = baseline, distance

between the optical centers of

the two cameras

• f = focal length

• v − v ′ = disparity
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Stereo Vision

• z = bf
v−v ′

• Distance is inversely proportional to disparity (v − v ′)

• closer objects can be measured more accurately
• Disparity is proportional to b.

• For a given disparity error, the accuracy of the depth estimate

increases with increasing baseline b.

• However, as b is increased, some objects may appear in one

camera, but not in the other.

• Two identical cameras do not exist in nature!

• Aligning both cameras on a horizontal axis is very hard.
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Correspondence Problem

• Correspondence Problem: Finding two matching points in the two

images which are projection of the same 3D real point

• Hard problem

• Point (or nearby neighborhood) must be distinctive: no flat

untextured walls

• Sometimes there are multiple matches

• Looking for m points (or small regions) in an N pixel image is

exponential, O(mN).
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Common Solution

• Lots of calibration needed to

get image coordinates to real

world coordinates

• Typically distance info is only

for objects within a few meters

of the cameras.


