Autonomous Learning of Stable Quadruped Locomotion

Manish Saggar, Thomas D'Silva, Nate Kohl, Peter Stone

Department or Computer Sciences The University of Texas at Austin

Goal: Enable an Aibo to walk as fast as possible

Goal: Enable an Aibo to walk as fast as possible

- Start with a **parameterized walk**
- Learn fastest possible parameters

Goal: Enable an Aibo to walk as fast as possible

- Start with a **parameterized walk**
- Learn fastest possible parameters
- No simulator available:
 - Learn entirely on robots
 - Minimal human intervention

Goal: Enable an Aibo to walk as fast as possible

- Start with a **parameterized walk**
- Learn fastest possible parameters
- No simulator available:
 - Learn entirely on robots
 - Minimal human intervention

New Goal: fast walk with a stable camera

.

• Keep objects centered, in the image

• Keep objects centered, in the image

Usefulness of stability

• Keep objects centered, in the image

• Reduce rotations:

Department of Computer Sciences

The University of Texas at Austin

- Eliminate need to transform image
- Object detection: better speed/accuracy tradeoff

1. Learn a walk that **naturally keeps head stable**

- 1. Learn a walk that **naturally keeps head stable**
- 2. Actively rotate the neck to compensate for walk motion

- 1. Learn a walk that **naturally keeps head stable**
- 2. Actively rotate the neck to compensate for walk motion

May need to trade off against speed

A Parameterized Walk

- Developed from scratch as part of UT Austin Villa 2003
- Trot gait with elliptical locus on each leg

Locus Parameters

- Ellipse length
- Ellipse height
- Position on x axis
- Position on y axis
- Body height
- Timing values

Locus Parameters

- Ellipse length
- Ellipse height
- Position on x axis
- Position on y axis
- Body height
- Timing values

• Head pan/tilt motion

Locus Parameters

- Ellipse length
- Ellipse height
- Position on x axis
- Position on y axis
- Body height
- Timing values

• Head pan/tilt motion

12 (16) continuous parameters

Full parameterization

- Front ellipse height, x-pos., y-pos. (3)
- Rear ellipse height, x-pos., y-pos. (3)
- Ellipse length (1)
- Ellipse skew multiplier in the x-y plane (for turning) (1)
- Front/rear body height (2)
- Time for each foot to complete ellipse (1)
- Fraction of time each foot spends on the ground (1)

Full parameterization

- Front ellipse height, x-pos., y-pos. (3)
- Rear ellipse height, x-pos., y-pos. (3)
- Ellipse length (1)
- Ellipse skew multiplier in the x-y plane (for turning) (1)
- Front/rear body height (2)
- Time for each foot to complete ellipse (1)
- Fraction of time each foot spends on the ground (1)
- Head pan limit and increment (2)
- Head tilt limit and increment (2)

Previous Experimental Setup

• Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) =$ walk speed when using π

Previous Experimental Setup

- Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) =$ walk **speed** when using π
- Training Scenario
 - Robots time themselves traversing fixed distance
 - Off-board computer **collects results**, **assigns policies**

Previous Experimental Setup

- Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) =$ walk **speed** when using π
- Training Scenario
 - Robots **time themselves** traversing fixed distance
 - Off-board computer collects results, assigns policies

No human intervention except battery changes

The University of Texas at Austin

Modified Objective Function

- M_t : time to walk fixed distance
- M_a : stddev. of 3 accelerometers

Modified Objective Function

- M_t : time to walk fixed distance
- M_a : stddev. of 3 accelerometers
- M_d : dist. of landmark centroid to image center

• M_{θ} : landmark tilt angle

Modified Objective Function

- M_t : time to walk fixed distance
- M_a : stddev. of 3 accelerometers
- M_d : dist. of landmark centroid to image center

• M_{θ} : landmark tilt angle

$$V(\pi) = 1 - (w_t M_t + w_a M_a + w_d M_d + w_\theta M_\theta)$$

Peter Stone

• From π want to move in direction of **gradient** of $V(\pi)$

- From π want to move in direction of **gradient** of $V(\pi)$
 - Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: **estimate** empirically

- From π want to move in direction of gradient of $V(\pi)$ - Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: estimate empirically
- Evaluate **neighboring policies** to estimate gradient
- Each trial randomly varies every parameter

- From π want to move in direction of **gradient** of $V(\pi)$ - Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: **estimate** empirically
- Evaluate **neighboring policies** to estimate gradient
- Each trial randomly varies every parameter

Fast Walk Results

 $V(\pi) = 1 - M_t$

Fast Walk Results

 $V(\pi) = 1 - M_t$

$$V(\pi) = 1 - (w_t M_t + w_a M_a + w_d M_d + w_\theta M_\theta)$$

Approach 1: Learning a Stable Gait

Favor speed

Equal weights

Peter Stone

Approach 1: Learning a Stable Gait

Favor speed

Equal weights

Approach 1: Learning a Stable Gait

Favor speed

Equal weights

Reduction Percentage

	Favor speed	Equal weights
M_t	-4.76%	-4.5%
M_a	34.7	32.6
M_d	60	57.14
M_{θ}	76.9	51.2

Segmentation Videos

Fast Walk

Stable Walk

Approach 2: Head Compensation

Favor speed

Equal weights

Approach 2: Head Compensation

Approach 2: Head Compensation

Stability Improves Object Detection

- Traverse field while identifying beacons
- Results scored based on ground truth

Stability Improves Object Detection

- Traverse field while identifying beacons
- Results scored based on ground truth

	True Positives	False Positives
Fast Gait	0.33	0.052
Stable Gait	0.46	0.028

Stability Improves Object Detection

- Traverse field while identifying beacons
- Results scored based on ground truth

	True Positives	False Positives
Fast Gait	0.33	0.052
Stable Gait	0.46	0.028

- 39% more true positives; 54% fewer false positives
- Statistically significant

- Policy gradient learning of **stable Aibo walk**
- All learning done **on real robots**
- Stability helps vision

- Policy gradient learning of **stable Aibo walk**
- All learning done on real robots
- Stability helps vision

with Manish Saggar, Thomas D'Silva, Nate Kohl

