#### A Model-Based Approach to Robot Joint Control

Daniel Stronger and Peter Stone

University of Texas at Austin

#### Introduction

- Robotic joints do not always behave as desired.
- We create a model of the joint's behavior.
- We use the model to make requests that yield the desired behavior.
- This approach is implemented and validated on a Sony Aibo ERS-210A.



## **Constructing a Model**

- The Aibo's four legs each have three joints.
- We use inverse kinematics to convert desired foot locations into desired joint angles.
- We can understand the inaccuracies in the foot location by analyzing inaccuracies in the joint angles.
  - Compare requested angles and actual angles



## **Constructing a Model**

- Identify the features of the model.
  - Time lag
  - Angular velocity cap?
  - Angular acceleration cap?



# **Performing Experiments**

- Request experimental trajectories.
- Observe resultant actual angles.
- With  $\theta_{test}$  of 40 degrees:





### **Performing Experiments**

- Request experimental trajectories.
- Observe resultant actual angles.
- With  $\theta_{test}$  of 40 and 110 degrees:





### **Experimental Findings**

• Lag time 
$$l = 4t_u$$
 ( $t_u = 8$ ms).

- Maximum velocity  $v_{\text{max}} = 2.5 \text{ degrees}/t_u$ .
- Acceleration time  $a = 6t_u$ .
- Despite maximum velocity, within a threshold higher angular differences mean higher velocities.

$$f(x) = \begin{cases} v_m ax & \text{if } x \ge \theta_0 \\ x \cdot \frac{v_{\max}}{\theta_0} & \text{if } -\theta_0 < x < \theta_0 \\ -v_{max} & \text{if } x \le -\theta_0 \end{cases}$$



• Angle distance threshold  $\theta_0 = 7$  degrees.

### **The Joint Model**

- Need model to satisfy observed behavior
- Use averaging to achieve desired effect:

$$M_R(t) = M_R(t-1) + \frac{1}{a} \sum_{i=l+1}^{l+a} f(R(t-i) - M_R(t-1))$$

# **Inverting the Model**

- Invert the model to find requests that yield the desired behavior according to the model.
- Difficult to invert model mathematically
  - Desired trajectories exceed the velocity restriction.
  - Difficult to find trajectories in range of model.
- Solution: use piecewise linear approximation.



What requests cause the joint to move at a constant velocity, m?

- What requests cause the joint to move at a constant velocity, m?
- Requests that move at the same velocity, offset by a constant,  $C_m$ .

- What requests cause the joint to move at a constant velocity, m?
- Requests that move at the same velocity, offset by a constant,  $C_m$ .
- ✓ We define a linear series of requests, L(t), that moves at velocity m, i.e. L(t) = L(t-1) + m.
- By applying the model to L, we can find the offset  $C_m$  that applies at this slope.

$$M_L(t) = L(t) - C_m$$

This is what we need to find the inverse of lines.

- First, define  $\delta(t) = L(t) M_L(t)$ .
- Plug in L for the requests:

$$M_L(t) = M_L(t-1) + \frac{1}{a} \sum_{i=l+1}^{l+a} f(L(t-i) - M_L(t-1))$$

- First, define  $\delta(t) = L(t) M_L(t)$ .
- Plug in L for the requests:

$$M_L(t) = M_L(t-1) + \frac{1}{a} \sum_{i=l+1}^{l+a} f(L(t-1) - m(i-1) - M_L(t-1))$$

- First, define  $\delta(t) = L(t) M_L(t)$ .
- Plug in L for the requests:

$$M_L(t) = M_L(t-1) + \frac{1}{a} \sum_{i=l+1}^{l+a} f(\delta(t-1) - m(i-1))$$

- First, define  $\delta(t) = L(t) M_L(t)$ .
- Plug in L for the requests:

$$M_L(t) = M_L(t-1) + \frac{1}{a} \sum_{i=l+1}^{l+a} f(\delta(t-1) - m(i-1))$$

$$S(x) = \frac{1}{a} \sum_{i=l+1}^{l+a} f(x - m(i-1))$$

$$M_L(t) = M_L(t-1) + S(\delta(t-1))$$

- First, define  $\delta(t) = L(t) M_L(t)$ .
- Plug in L for the requests:

$$M_L(t) = M_L(t-1) + \frac{1}{a} \sum_{i=l+1}^{l+a} f(\delta(t-1) - m(i-1))$$

$$S(x) = \frac{1}{a} \sum_{i=l+1}^{l+a} f(x - m(i-1))$$

$$L(t) - \delta(t) = L(t - 1) - \delta(t - 1) + S(\delta(t - 1))$$

- First, define  $\delta(t) = L(t) M_L(t)$ .
- Plug in L for the requests:

$$M_L(t) = M_L(t-1) + \frac{1}{a} \sum_{i=l+1}^{l+a} f(\delta(t-1) - m(i-1))$$

$$S(x) = \frac{1}{a} \sum_{i=l+1}^{l+a} f(x - m(i-1))$$

$$\delta(t) = \delta(t-1) + m - S(\delta(t-1))$$

- First, define  $\delta(t) = L(t) M_L(t)$ .
- Plug in L for the requests:

$$M_L(t) = M_L(t-1) + \frac{1}{a} \sum_{i=l+1}^{l+a} f(\delta(t-1) - m(i-1))$$

$$S(x) = \frac{1}{a} \sum_{i=l+1}^{l+a} f(x - m(i-1))$$

$$\delta(t) = \delta(t-1) + m - S(\delta(t-1))$$

 $S(\delta(t)) = m$ 

- First, define  $\delta(t) = L(t) M_L(t)$ .
- Plug in L for the requests:

$$M_L(t) = M_L(t-1) + \frac{1}{a} \sum_{i=l+1}^{l+a} f(\delta(t-1) - m(i-1))$$

$$S(x) = \frac{1}{a} \sum_{i=l+1}^{l+a} f(x - m(i-1))$$

$$\delta(t) = \delta(t-1) + m - S(\delta(t-1))$$

 $S(C_m) = m$ 

# **Combining Inverted Line Segments**

- Need appropriate transitions between lines.
- Switch between inverted lines before desired lines.
  - For the lag: l
  - For half the acceleration time:  $\frac{a}{2}$
- Transition between inverted lines  $l + \frac{a}{2}$  before corresponding transition between desired lines.

#### **Experimental results**



## **Experimental Results**

Compute distances between angular trajectories

- Des: Desired angles
- Dir: Angles attained by requesting the desired angles directly
- *▶ Pwl*: Piecewise linear approximation
- *MB*: Angles attained using model-based method
- Treat trajectories as vectors.
  - Use  $L_2$  norm.
  - Use  $L_{\infty}$  norm.

### **Experimental Results**

Compute distances between angular trajectories

| Comparison                | Rotator          | Abductor        | Knee            |
|---------------------------|------------------|-----------------|-----------------|
| $igsquare$ $L_2(Des,Dir)$ | $31.0(\pm 0.2)$  | $29.0(\pm 0.2)$ | $20.1(\pm 0.1)$ |
| $L_{\infty}(De^{s}, Dir)$ | $57.2(\pm 0.3)$  | $59.5(\pm 0.5)$ | $42.6(\pm 0.3)$ |
| $igslash L_2(Des,MB)$     | 9.1( $\pm 0.2$ ) | $10.4(\pm 0.1)$ | $5.6(\pm 0.2)$  |
| $L_{\infty}(De^{s}, MB)$  | $29.4(\pm 0.8)$  | $24.5(\pm 0.7)$ | $11.1(\pm 0.5)$ |
| $L_2(Pwl, MB)$            | $2.7(\pm 0.4)$   | $2.7(\pm 0.3)$  | $2.6(\pm 0.2)$  |
| $L_{\infty}(Pwl, MB)$     | $6.4(\pm 0.6)$   | $6.0(\pm 0.4)$  | $6.2(\pm 0.7)$  |

### **Experimental Results**

- Compare foot location in physical space.
- **Direct method:**  $L_2$ :  $3.23 \pm 0.01$  cm;  $L_\infty$ :  $4.61 \pm 0.05$  cm
- Model-based method:  $L_2$ :  $1.21 \pm 0.01$  cm;  $L_{\infty}$ :  $2.34 \pm 0.01$  cm



## **Conclusion and Future Work**

- By modeling the inaccuracies in robotic joints, we can compute joint requests that more closely yield the desired effects.
- Possibilities for future work:
  - Implement this approach on other platforms.
  - Model the effects of external forces.
  - Have the robot learn its own joint models.