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Good Afternoon Colleagues

• Are there any questions?



Stochastic Models of an
Uncertain World

• Actions are uncertain.
• Observations are uncertain.
•  εi ~ N(0,σi) are random variables

! 

˙ x = F(x,u)
y = G(x)

"
˙ x = F(x,u,#1)
y = G(x,#2 )



Observers

• The state x is unobservable.
• The sense vector y provides noisy information

about x.
• An observer                       is a process that uses

sensory history to estimate x.
• Then a control law can be written

! 

u = Hi(ˆ x )

! 

˙ x = F(x,u,"1)
y = G(x,"2 )

! 

ˆ x =Obs(y)



Kalman Filter: Optimal Observer
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˙ x = F(x,u,"1)
y = G(x,"2 )



Estimates and Uncertainty
• Conditional probability density function



Gaussian (Normal) Distribution
• Completely described by N(µ,σ 2)

– Mean µ
– Standard deviation σ,  variance σ 2
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The Central Limit Theorem

• The sum of many random variables
– with the same mean, but
– with arbitrary conditional density functions,

    converges to a Gaussian density function.

• If a model omits many small unmodeled
effects, then the resulting error should
converge to a Gaussian density function.



Illustrating the Central Limit Thm
– Add 1, 2, 3, 4 variables from the same distribution.



Detecting Modeling Error

• Every model is incomplete.
– If the omitted factors are all small, the

resulting errors should add up to a Gaussian.

• If the error between a model and the data
is not Gaussian,
– Then some omitted factor is not small.
– One should find the dominant source of error

and add it to the model.



Estimating a Value
• Suppose there is a constant value x.

– Distance to wall; angle to wall; etc.
• At time t1, observe value z1 with variance
• The optimal estimate is                  with

variance
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ˆ x (t1) = z1
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A Second Observation
• At time t2, observe value z2 with variance
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Merged Evidence



Update Mean and Variance
• Weighted average of estimates.

• The weights come from the variances.
– Smaller variance = more certainty
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ˆ x (t2) = Az1 + Bz2
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From Weighted Average
to Predictor-Corrector

• Weighted average:

• Predictor-corrector:

– This version can be applied “recursively”.

! 

ˆ x (t2) = Az1 + Bz2 = (1" K)z1 + Kz2

! 

ˆ x (t2) = z1 + K(z2 " z1)

! 

= ˆ x (t1) + K(z2 " ˆ x (t1))



Predictor-Corrector
• Update best estimate given new data

• Update variance:

! 

ˆ x (t2) = ˆ x ( t1) + K(t2)(z2 " ˆ x ( t1))
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Static to Dynamic
• Now suppose x changes according to

! 

˙ x = F(x,u,") = u +" (N (0,#" ))



Dynamic Prediction

• At t2 we know
• At t3 after the change, before an observation.

• Next, we correct this prediction with the
observation at time t3.

! 

ˆ x (t3
") = ˆ x ( t2) + u[ t3 " t2]

! 

" 2(t3
#) = " 2( t2) + "$

2 [t3 # t2 ]

! 

ˆ x (t2) " 2(t2)



Dynamic Correction
• At time t3 we observe z3 with variance
• Combine prediction with observation.
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Qualitative Properties

• Suppose measurement noise         is large.
– Then K(t3) approaches 0, and the measurement

will be mostly ignored.
• Suppose prediction noise              is large.

– Then K(t3) approaches 1, and the measurement
will dominate the estimate.
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Kalman Filter
• Takes a stream of observations, and a

dynamical model.
• At each step, a weighted average between

– prediction from the dynamical model
– correction from the observation.

• The Kalman gain K(t) is the weighting,
– based on the variances            and

• With time, K(t) and           tend to stabilize.
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Simplifications
• We have only discussed a one-dimensional

system.
– Most applications are higher dimensional.

• We have assumed the state variable is
observable.
– In general, sense data give indirect evidence.

• We will discuss the more complex case next.

! 

˙ x = F(x,u,"1) = u +"1

! 

z =G(x,"2) = x +"2



Up To Higher Dimensions

• Our previous Kalman Filter discussion was
of a simple one-dimensional model.

• Now we go up to higher dimensions:
– State vector:
– Sense vector:
– Motor vector:

• First, a little statistics.
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x "#n
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z "#m
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u" #l



Expectations
• Let x be a random variable.
• The expected value E[x] is the mean:

– The probability-weighted mean of all possible
values.  The sample mean approaches it.

• Expected value of a vector x is by component.
! 

E[x] = x p(x) dx" # x = 1
N

xi
1

N

$

  

! 

E[x] = x = [x 1,Lx n ]
T



Variance and Covariance
• The variance is E[ (x-E[x])2 ]

• Covariance matrix is E[ (x-E[x])(x-E[x])T ]

– Divide by N−1 to make the sample variance an
unbiased estimator for the population variance.
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Covariance Matrix
• Along the diagonal, Cii are variances.
• Off-diagonal Cij are essentially correlations.
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Independent Variation
• x and y are

Gaussian random
variables  (N=100)

• Generated with
σx=1    σy=3

• Covariance matrix:
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Cxy =
0.90 0.44
0.44 8.82
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Dependent Variation
• c and d are random

variables.
• Generated with

c=x+y     d=x-y
• Covariance matrix:
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Ccd =
10.62 "7.93
"7.93 8.84
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Discrete Kalman Filter
• Estimate the state  x ∈ ℜn  of a linear

stochastic difference equation

– process noise w is drawn from N(0,Q), with
covariance matrix Q.

• with a measurement z ∈ ℜm

– measurement noise v is drawn from N(0,R), with
covariance matrix R.

• A, Q are n×n.  B is n×l. R is m×m.  H is m×n.

! 

x k =Ax k"1 + Buk"1 + wk"1

! 

zk =Hx k + vk



Estimates and Errors
•              is the estimated state at time-step k.
•               after prediction, before observation.
• Errors:

• Error covariance matrices:

• Kalman Filter’s task is to update

! 

ˆ x k "#n

! 

ˆ x k
" # $n

! 

ek" = x k " ˆ x k"

ek = x k " ˆ x k

! 

Pk
" = E[ek

" ek
"T ]

Pk = E[ek ekT ]
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ˆ x k Pk



Time Update (Predictor)
• Update expected value of x

• Update error covariance matrix P

• Previous statements were simplified
versions of the same idea:

! 

ˆ x k
" = Aˆ x k"1 + Buk"1

! 

Pk
" =APk"1A

T +Q

! 

ˆ x (t3
") = ˆ x ( t2) + u[ t3 " t2]

! 

" 2(t3
#) = " 2( t2) + "$

2 [t3 # t2 ]



Measurement Update (Corrector)

• Update expected value

– innovation is
• Update error covariance matrix

• Compare with previous form

! 

ˆ x k = ˆ x k
" + Kk(zk "Hˆ x k

")

! 

zk "Hˆ x k
"

! 

Pk = (I"K kH)Pk
"

! 

ˆ x (t3) = ˆ x ( t3
") + K( t3)(z3 " ˆ x (t3

"))

! 

" 2(t3) = (1# K(t3))"
2 (t3

#)



The Kalman Gain
• The optimal Kalman gain Kk is

• Compare with previous form

! 

K k = Pk
"HT (HPk

"HT +R)"1

! 

=
Pk"HT

HPk
"HT +R
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K(t3) =
" 2( t3#)

" 2( t3
#) + "3
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Extended Kalman Filter
• Suppose the state-evolution and

measurement equations are non-linear:

– process noise w is drawn from N(0,Q), with
covariance matrix Q.

– measurement noise v is drawn from N(0,R),
with covariance matrix R.

! 

x k = f (x k"1,uk"1) + wk"1

! 

zk = h(x k) + vk



The Jacobian Matrix
• For a scalar function y=f(x),

• For a vector function y=f(x),
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"y = # f (x)"x
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Linearize the Non-Linear

• Let A be the Jacobian of f with respect to x.

• Let H be the Jacobian of h with respect to x.

• Then the Kalman Filter equations are almost
the same as before!

! 

A ij =
"f i
"x j

(x k#1,uk#1)

! 

H ij =
"hi
"x j

(x k)



EKF Update Equations
• Predictor step:

• Kalman gain:

• Corrector step:

! 

ˆ x k
" = f ( ˆ x k"1,uk"1)

! 

Pk
" =APk"1A

T +Q

! 

K k = Pk
"HT (HPk

"HT +R)"1

! 

ˆ x k = ˆ x k
" + Kk(zk " h(ˆ x k

"))

! 

Pk = (I"K kH)Pk
"


