Observers and Kalman Filters

CS 393R: Autonomous Robots

Good Afternoon Colleagues

- Are there any questions?

Stochastic Models of an Uncertain World

$$
\begin{aligned}
\dot{\mathbf{x}} & =F(\mathbf{x}, \mathbf{u}) \\
\mathbf{y} & =G(\mathbf{x})
\end{aligned} \Rightarrow \begin{aligned}
\dot{\mathbf{x}} & =F\left(\mathbf{x}, \mathbf{u}, \varepsilon_{1}\right) \\
\mathbf{y} & =G\left(\mathbf{x}, \varepsilon_{2}\right)
\end{aligned}
$$

- Actions are uncertain.
- Observations are uncertain.
- $\varepsilon_{i} \sim N\left(0, \sigma_{i}\right)$ are random variables

Observers

$$
\begin{aligned}
\dot{\mathbf{x}} & =F\left(\mathbf{x}, \mathbf{u}, \varepsilon_{1}\right) \\
\mathbf{y} & =G\left(\mathbf{x}, \varepsilon_{2}\right)
\end{aligned}
$$

- The state \mathbf{x} is unobservable.
- The sense vector \mathbf{y} provides noisy information about \mathbf{x}.
- An observer $\hat{\mathbf{x}}=\operatorname{Obs}(\mathbf{y})$ is a process that uses sensory history to estimate \mathbf{x}.
- Then a control law can be written

$$
\mathbf{u}=H_{i}(\hat{\mathbf{x}})
$$

Kalman Filter: Optimal Observer

Estimates and Uncertainty

- Conditional probability density function

Gaussian (Normal) Distribution

- Completely described by $N\left(\mu, \sigma^{2}\right)$
- Mean μ
- Standard deviation σ, variance σ^{2}

The Central Limit Theorem

- The sum of many random variables
- with the same mean, but
- with arbitrary conditional density functions, converges to a Gaussian density function.
- If a model omits many small unmodeled effects, then the resulting error should converge to a Gaussian density function.

Illustrating the Central Limit Thm

- Add 1, 2, 3, 4 variables from the same distribution.

Detecting Modeling Error

- Every model is incomplete.
- If the omitted factors are all small, the resulting errors should add up to a Gaussian.
- If the error between a model and the data is not Gaussian,
- Then some omitted factor is not small.
- One should find the dominant source of error and add it to the model.

Estimating a Value

- Suppose there is a constant value x.
- Distance to wall; angle to wall; etc.
- At time t_{1}, observe value z_{1} with variance σ_{1}^{2}
- The optimal estimate is $\hat{x}\left(t_{1}\right)=z_{1}$ with variance σ_{1}^{2}

A Second Observation

- At time t_{2}, observe value z_{2} with variance σ_{2}^{2}

Merged Evidence

Update Mean and Variance

- Weighted average of estimates.

$$
\hat{x}\left(t_{2}\right)=A z_{1}+B z_{2} \quad A+B=1
$$

- The weights come from the variances.
- Smaller variance $=$ more certainty

$$
\begin{gathered}
\hat{x}\left(t_{2}\right)=\left[\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right] z_{1}+\left[\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right] z_{2} \\
\frac{1}{\sigma^{2}\left(t_{2}\right)}=\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}
\end{gathered}
$$

From Weighted Average to Predictor-Corrector

- Weighted average:

$$
\hat{x}\left(t_{2}\right)=A z_{1}+B z_{2}=(1-K) z_{1}+K z_{2}
$$

- Predictor-corrector:

$$
\begin{aligned}
\hat{x}\left(t_{2}\right) & =z_{1}+K\left(z_{2}-z_{1}\right) \\
& =\hat{x}\left(t_{1}\right)+K\left(z_{2}-\hat{x}\left(t_{1}\right)\right)
\end{aligned}
$$

- This version can be applied "recursively".

Predictor-Corrector

- Update best estimate given new data

$$
\begin{array}{r}
\hat{x}\left(t_{2}\right)=\hat{x}\left(t_{1}\right)+K\left(t_{2}\right)\left(z_{2}-\hat{x}\left(t_{1}\right)\right) \\
K\left(t_{2}\right)=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}
\end{array}
$$

- Update variance:

$$
\begin{aligned}
\sigma^{2}\left(t_{2}\right) & =\sigma^{2}\left(t_{1}\right)-K\left(t_{2}\right) \sigma^{2}\left(t_{1}\right) \\
& =\left(1-K\left(t_{2}\right)\right) \sigma^{2}\left(t_{1}\right)
\end{aligned}
$$

Static to Dynamic

- Now suppose x changes according to

$$
\dot{x}=F(x, u, \varepsilon)=u+\varepsilon \quad\left(N\left(0, \sigma_{\varepsilon}\right)\right)
$$

$$
f_{x(t) \mid z\left(t_{1}\right), z\left(t_{2}\right)}\left(x \mid z_{1}, z_{2}\right)
$$

Dynamic Prediction

- At t_{2} we know $\hat{x}\left(t_{2}\right) \quad \sigma^{2}\left(t_{2}\right)$
- At t_{3} after the change, before an observation.

$$
\begin{aligned}
\hat{x}\left(t_{3}^{-}\right) & =\hat{x}\left(t_{2}\right)+u\left[t_{3}-t_{2}\right] \\
\sigma^{2}\left(t_{3}^{-}\right) & =\sigma^{2}\left(t_{2}\right)+\sigma_{\varepsilon}^{2}\left[t_{3}-t_{2}\right]
\end{aligned}
$$

- Next, we correct this prediction with the observation at time t_{3}.

Dynamic Correction

- At time t_{3} we observe z_{3} with variance σ_{3}^{2}
- Combine prediction with observation.

$$
\begin{array}{r}
\hat{x}\left(t_{3}\right)=\hat{x}\left(\overline{t_{3}^{-}}\right)+K\left(t_{3}\right)\left(z_{3}-\hat{x}\left(t_{3}^{-}\right)\right) \\
\sigma^{2}\left(t_{3}\right)=\left(1-K\left(t_{3}\right)\right) \sigma^{2}\left(t_{3}^{-}\right) \\
K\left(t_{3}\right)=\frac{\sigma^{2}\left(t_{3}^{-}\right)}{\sigma^{2}\left(\overline{t_{3}}\right)+\sigma_{3}^{2}}
\end{array}
$$

Qualitative Properties

$$
\begin{array}{r}
\hat{x}\left(t_{3}\right)=\hat{x}\left(t_{3}^{-}\right)+K\left(t_{3}\right)\left(z_{3}-\hat{x}\left(t_{3}^{-}\right)\right) \\
K\left(t_{3}\right)=\frac{\sigma^{2}\left(t_{3}^{-}\right)}{\sigma^{2}\left(\overline{t_{3}}\right)+\sigma_{3}^{2}}
\end{array}
$$

- Suppose measurement noise σ_{3}^{2} is large.
- Then $K\left(t_{3}\right)$ approaches 0 , and the measurement will be mostly ignored.
- Suppose prediction noise $\sigma^{2}\left(t_{3}^{-}\right)$is large.
- Then $K\left(t_{3}\right)$ approaches 1 , and the measurement will dominate the estimate.

Kalman Filter

- Takes a stream of observations, and a dynamical model.
- At each step, a weighted average between
- prediction from the dynamical model
- correction from the observation.
- The Kalman gain $K(t)$ is the weighting,
- based on the variances $\sigma^{2}(t)$ and σ_{ε}^{2}
- With time, $K(t)$ and $\sigma^{2}(t)$ tend to stabilize.

Simplifications

- We have only discussed a one-dimensional system.
- Most applications are higher dimensional.
- We have assumed the state variable is observable.
- In general, sense data give indirect evidence.

$$
\begin{aligned}
\dot{x} & =F\left(x, u, \varepsilon_{1}\right)=u+\varepsilon_{1} \\
z & =G\left(x, \varepsilon_{2}\right)=x+\varepsilon_{2}
\end{aligned}
$$

- We will discuss the more complex case next.

Up To Higher Dimensions

- Our previous Kalman Filter discussion was of a simple one-dimensional model.
- Now we go up to higher dimensions:
- State vector: $\quad \mathbf{x} \in \mathfrak{R}^{n}$
- Sense vector: $\mathbf{z} \in \mathfrak{R}^{m}$
- Motor vector: $\quad \mathbf{u} \in \mathfrak{R}^{l}$
- First, a little statistics.

Expectations

- Let x be a random variable.
- The expected value $E[x]$ is the mean:

$$
E[x]=\int x p(x) d x \approx \bar{x}=\frac{1}{N} \sum_{1}^{N} x_{i}
$$

- The probability-weighted mean of all possible values. The sample mean approaches it.
- Expected value of a vector \mathbf{x} is by component.

$$
E[\mathbf{x}]=\overline{\mathbf{x}}=\left[\bar{x}_{1}, \cdots \bar{x}_{n}\right]^{T}
$$

Variance and Covariance

- The variance is $E\left[(x-E[x])^{2}\right]$

$$
\sigma^{2}=E\left[(x-\bar{x})^{2}\right]=\frac{1}{N} \sum_{1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

- Covariance matrix is $E\left[(\mathbf{x}-E[\mathbf{x}])(\mathbf{x}-E[\mathbf{x}])^{T}\right]$

$$
C_{i j}=\frac{1}{N} \sum_{k=1}^{N}\left(x_{i k}-\bar{x}_{i}\right)\left(x_{j k}-\bar{x}_{j}\right)
$$

- Divide by $N-1$ to make the sample variance an unbiased estimator for the population variance.

Covariance Matrix

- Along the diagonal, $C_{i i}$ are variances.
- Off-diagonal $C_{i j}$ are essentially correlations.

$$
\left[\begin{array}{cccc}
C_{1,1}=\sigma_{1}^{2} & C_{1,2} & & C_{1, N} \\
C_{2,1} & C_{2,2}=\sigma_{2}^{2} & & \\
& & \ddots & \vdots \\
C_{N, 1} & & \cdots & C_{N, N}=\sigma_{N}^{2}
\end{array}\right]
$$

Independent Variation

- x and y are

Gaussian random variables $(N=100)$

- Generated with $\sigma_{x}=1 \quad \sigma_{y}=3$
- Covariance matrix:

$$
C_{x y}=\left[\begin{array}{ll}
0.90 & 0.44 \\
0.44 & 8.82
\end{array}\right]
$$

Dependent Variation

- c and d are random variables.
- Generated with

$$
c=x+y \quad d=x-y
$$

- Covariance matrix:

$$
C_{c d}=\left[\begin{array}{cc}
10.62 & -7.93 \\
-7.93 & 8.84
\end{array}\right]
$$

Discrete Kalman Filter

- Estimate the state $\mathbf{x} \in \mathfrak{R}^{n}$ of a linear stochastic difference equation

$$
\mathbf{x}_{k}=\mathbf{A} \mathbf{x}_{k-1}+\mathbf{B} \mathbf{u}_{k-1}+\mathbf{w}_{k-1}
$$

- process noise \mathbf{w} is drawn from $N(0, \mathbf{Q})$, with covariance matrix \mathbf{Q}.
- with a measurement $\mathbf{z} \in \mathfrak{R}^{m}$

$$
\mathbf{z}_{k}=\mathbf{H} \mathbf{x}_{k}+\mathbf{v}_{k}
$$

- measurement noise \mathbf{v} is drawn from $N(0, \mathbf{R})$, with covariance matrix \mathbf{R}.
- \mathbf{A}, \mathbf{Q} are $n \times n . \mathbf{B}$ is $n \times l . \mathbf{R}$ is $m \times m . \mathbf{H}$ is $m \times n$.

Estimates and Errors

- $\hat{\mathbf{x}}_{k} \in \Re^{n}$ is the estimated state at time-step k.
- $\hat{\mathbf{x}}_{k}^{-} \in \mathfrak{R}^{n}$ after prediction, before observation.
- Errors: $\quad \mathbf{e}_{k}^{-}=\mathbf{x}_{k}-\hat{\mathbf{x}}_{k}^{-}$

$$
\mathbf{e}_{k}=\mathbf{x}_{k}-\hat{\mathbf{x}}_{k}
$$

- Error covariance matrices:

$$
\begin{aligned}
& \mathbf{P}_{k}^{-}=E\left[\mathbf{e}_{k}^{-} \mathbf{e}_{k}^{-T}\right] \\
& \mathbf{P}_{k}=E\left[\mathbf{e}_{k} \mathbf{e}_{k}^{T}\right]
\end{aligned}
$$

- Kalman Filter's task is to update $\hat{\mathbf{x}}_{k} \quad \mathbf{P}_{k}$

Time Update (Predictor)

- Update expected value of \mathbf{x}

$$
\hat{\mathbf{x}}_{k}^{-}=\mathbf{A} \hat{\mathbf{x}}_{k-1}+\mathbf{B} \mathbf{u}_{k-1}
$$

- Update error covariance matrix \mathbf{P}

$$
\mathbf{P}_{k}^{-}=\mathbf{A} \mathbf{P}_{k-1} \mathbf{A}^{T}+\mathbf{Q}
$$

- Previous statements were simplified versions of the same idea:

$$
\begin{aligned}
\hat{x}\left(t_{3}^{-}\right) & =\hat{x}\left(t_{2}\right)+u\left[t_{3}-t_{2}\right] \\
\sigma^{2}\left(t_{3}^{-}\right) & =\sigma^{2}\left(t_{2}\right)+\sigma_{\varepsilon}^{2}\left[t_{3}-t_{2}\right]
\end{aligned}
$$

Measurement Update (Corrector)

- Update expected value

$$
\hat{\mathbf{x}}_{k}=\hat{\mathbf{x}}_{k}^{-}+\mathbf{K}_{k}\left(\mathbf{z}_{k}-\mathbf{H} \hat{\mathbf{x}}_{k}^{-}\right)
$$

- innovation is $\mathbf{z}_{k}-\mathbf{H} \hat{\mathbf{x}}_{k}^{-}$
- Update error covariance matrix

$$
\mathbf{P}_{k}=\left(\mathbf{I}-\mathbf{K}_{k} \mathbf{H}\right) \mathbf{P}_{k}^{-}
$$

- Compare with previous form

$$
\begin{gathered}
\hat{x}\left(t_{3}\right)=\hat{x}\left(t_{3}^{-}\right)+K\left(t_{3}\right)\left(z_{3}-\hat{x}\left(t_{3}^{-}\right)\right) \\
\sigma^{2}\left(t_{3}\right)=\left(1-K\left(t_{3}\right)\right) \sigma^{2}\left(t_{3}^{-}\right)
\end{gathered}
$$

The Kalman Gain

- The optimal Kalman gain \mathbf{K}_{k} is

$$
\begin{aligned}
\mathbf{K}_{k} & =\mathbf{P}_{k}^{-} \mathbf{H}^{T}\left(\mathbf{H} P_{k}^{-} \mathbf{H}^{T}+\mathbf{R}\right)^{-1} \\
& =\frac{\mathbf{P}_{k}^{-} \mathbf{H}^{T}}{\mathbf{H P}_{k}^{-} \mathbf{H}^{T}+\mathbf{R}}
\end{aligned}
$$

- Compare with previous form

$$
K\left(t_{3}\right)=\frac{\sigma^{2}\left(t_{3}^{-}\right)}{\sigma^{2}\left(t_{3}^{-}\right)+\sigma_{3}^{2}}
$$

Extended Kalman Filter

- Suppose the state-evolution and measurement equations are non-linear:

$$
\begin{aligned}
& \mathbf{x}_{k}=f\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)+\mathbf{w}_{k-1} \\
& \mathbf{z}_{k}=h\left(\mathbf{x}_{k}\right)+\mathbf{v}_{k}
\end{aligned}
$$

- process noise \mathbf{w} is drawn from $N(0, \mathbf{Q})$, with covariance matrix \mathbf{Q}.
- measurement noise \mathbf{v} is drawn from $N(0, \mathbf{R})$, with covariance matrix \mathbf{R}.

The Jacobian Matrix

- For a scalar function $y=f(x)$,

$$
\Delta y=f^{\prime}(x) \Delta x
$$

- For a vector function $\mathbf{y}=f(\mathbf{x})$,

$$
\Delta \mathbf{y}=\mathbf{J} \Delta \mathbf{x}=\left[\begin{array}{c}
\Delta y_{1} \\
\vdots \\
\Delta y_{n}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{x}) \\
\vdots & & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial f_{n}}{\partial x_{n}}(\mathbf{x})
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta x_{1} \\
\vdots \\
\Delta x_{n}
\end{array}\right]
$$

Linearize the Non-Linear

- Let \mathbf{A} be the Jacobian of f with respect to \mathbf{x}.

$$
\mathbf{A}_{i j}=\frac{\partial f_{i}}{\partial x_{j}}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)
$$

- Let \mathbf{H} be the Jacobian of h with respect to \mathbf{x}.

$$
\mathbf{H}_{i j}=\frac{\partial h_{i}}{\partial x_{j}}\left(\mathbf{x}_{k}\right)
$$

- Then the Kalman Filter equations are almost the same as before!

EKF Update Equations

- Predictor step: $\quad \hat{\mathbf{x}}_{k}^{-}=f\left(\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}\right)$

$$
\mathbf{P}_{k}^{-}=\mathbf{A} \mathbf{P}_{k-1} \mathbf{A}^{T}+\mathbf{Q}
$$

- Kalman gain: $\mathbf{K}_{k}=\mathbf{P}_{k}^{-} \mathbf{H}^{T}\left(\mathbf{H} \mathbf{P}_{k}^{-} \mathbf{H}^{T}+\mathbf{R}\right)^{-1}$
- Corrector step: $\hat{\mathbf{x}}_{k}=\hat{\mathbf{x}}_{k}^{-}+\mathbf{K}_{k}\left(\mathbf{z}_{k}-h\left(\hat{\mathbf{x}}_{k}^{-}\right)\right)$

$$
\mathbf{P}_{k}=\left(\mathbf{I}-\mathbf{K}_{k} \mathbf{H}\right) \mathbf{P}_{k}^{-}
$$

