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Good Afternoon Colleagues

* Are there any questions?



Stochastic Models of an

Uncertain World
x = F(xu) x = F(xug)
—
y = G(x) y = G(x,¢)

e Actions are uncertain.
e Observations are uncertain.

e ¢~ N(0,0;) are random variables



Observers
x = F(xug)

Yy = G(X,Sz)
The state x 1s unobservable.

The sense vector y provides noisy information
about Xx.

An observer X = Obs(y) is a process that uses
sensory history to estimate X.

Then a control law can be written

u=H (Xx)



Kalman Filter: Optimal Observer

Controls

T ———————— ————— -~

System error
sources

u

r——ﬁ———-————-—-—-—-—~¢-——-——-—--—-—4-—-—-————-‘

System state
X | (desired, but
not known)

H

!

Measuring

Observed
measurements

devices

|

Measurement £
error sources -~

. ——— — — — —. — N G — . Y —— —. — Y —— — ———————. — — y— —

y

Kalman
filter

F(x,u,¢))
G(Xx,¢,)

Optimal estimate
of system state

-
A

X



Estimates and Uncertainty

e Conditional probability density function
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Gaussian (Normal) Distribution

e Completely described by N(u,o0?)
— Mean u
— Standard deviation o, variance o “?
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The Central Limit Theorem

 The sum of many random variables
— with the same mean, but

— with arbitrary conditional density functions,

converges to a Gaussian density function.

e If a model omits many small unmodeled
effects, then the resulting error should
converge to a Gaussian density function.



[llustrating the Central Limit Thm

— Add 1, 2, 3, 4 variables from the same distribution.
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Detecting Modeling Error

 Every model 1s incomplete.

— If the omitted factors are all small, the
resulting errors should add up to a Gaussian.

e [f the error between a model and the data
1S not Gaussian,

— Then some omitted factor 1s notr small.

— One should find the dominant source of error
and add it to the model.



Estimating a Value

e Suppose there i1s a constant value x.

— Distance to wall; angle to wall; etc.
. . . 2
e At time ¢, observe value z, with variance O,
e The optimal estimate is x(¢,) =z with
2

variance O, A
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A Second Observation

. . . 2
e At time ¢,, observe value z, with variance o,
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Update Mean and Variance

* Weighted average of estimates.

x(t,) = Az, + Bz, A+B=1

* The weights come from the variances.

— Smaller variance = more certainty

> ] I p
H(1,) =| =2 !
X\l,) =3 2 Sl ) > Ko
O, +0, O, +0,

1 1 1
= —
> > >
o(t,) o, O,



From Weighted Average
to Predictor-Corrector

* Weighted average:
x(t,) = Az, + Bz, =(1- K)z, + Kz,

e Predictor-corrector:

x(t,) =z +K(z, —z,)
= x(t,) + K(z, — x(t,))

— This version can be applied “recursively”.



Predictor-Corrector
e Update best estimate given new data
x(t,) = x() + K(1,)(z, - x(1,))
2

O,
K(t2)= 2 2
O'l +()'2

* Update variance:
o’(t,) =0°(t) - K(1,)o°(,)
=(1-K(1,)) 0" (1,)



Static to Dynamic

 Now suppose x changes according to
x=F(x,ue)=u+e (N (0,0,))
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Dynamic Prediction

o Att, we know Xx(z,) Oz(tz)

* At 1, after the change, before an observation.
x(t;)=x(t,)+ u[t,—t,]
2, - 2 2
o(t;))=0(t,)+0, |, - 1]

* Next, we correct this prediction with the
observation at time #;.



Dynamic Correction

. . . 2
* At time ¢; we observe z; with variance O,

 Combine prediction with observation.
xX(t3) = X(5;) + K(8,)(z5 = x(£3))
07 (t;) = 1= K(1;))0° (1;)
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Qualitative Properties
xX(t3) = x(;) + K(1;)(z, = X(1;))
o’ (1)
az(t;) + (732

K(t3) =

. 2 .
* Suppose measurement noise O; 1s large.

— Then K(¢;) approaches 0, and the measurement
will be mostly 1gnored.

e Suppose prediction noise o’(t]) is large.

— Then K(¢;) approaches 1, and the measurement
will dominate the estimate.



Kalman Filter

Takes a stream of observations, and a
dynamical model.

At each step, a weighted average between
— prediction from the dynamical model

— correction from the observation.

The Kalman gain K(7) 1s the weighting,

— based on the variances () and ng
With time, K(¢) and o°(¢) tend to stabilize.



Simplifications

* We have only discussed a one-dimensional
system.

— Most applications are higher dimensional.

e We have assumed the state variable i1s
observable.

— In general, sense data give indirect evidence.

x=F(x,ue)=u+e¢
2=G(x,6,) =x+¢,

* We will discuss the more complex case next.



Up To Higher Dimensions

e Our previous Kalman Filter discussion was
of a simple one-dimensional model.
e Now we go up to higher dimensions:

— State vector: x EN"

— Sense vector: 7z ENR"
l

_ Motor vector: U E N

e First, a little statistics.



Expectations

e | et x be arandom variable.

* The expected value E[x] 1s the mean:
1 N
Elx]= ] xp(x)dx=Xx=— ) x,
J x p(x) NZ

— The probability-weighted mean of all possible
values. The sample mean approaches it.

 Expected value of a vector x 1s by component.

Elx]|=X=[X, X%,



Variance and Covariance
e The variance is E[ (x-E[x])? ]
1 N
0’ = El(x-D)"1= = 2 (= 0’
1

e Covariance matrix is E[ (x-E[x])(x-E[x])7 ]

1 & _ _
Cij =ﬁ2('xik _xi)(xjk _xj)
k=1

— Divide by N-1 to make the sample variance an
unbiased estimator for the population variance.



Covariance Matrix

* Along the diagonal, C,; are variances.

* Off-diagonal C;; are essentially correlations.




Independent Variation

e xand y are
Gaussian random

variables (N=100) 033093:
e Generated with e
o=1 0,=3 ° °‘3‘>;g;‘f;8}
e Covariance matrix: | o °°°°g%lo§°°°°°
090 044]
C. . = .

Y044 882




Dependent Variation

e ¢ and d are random
variables.

e (Generated with
c=x+y d=x-y

e Covariance matrix:

10.62
Ccd =

-793 884

~7.93]




Discrete Kalman Filter

o Estimate the state x € N” of a linear
stochastic difference equation
X, =Ax, , +Bu_, +w,_

— process noise w 1s drawn from N(0,Q), with
covariance matrix Q.

e with a measurement z € h"™
z, =HX, + vV,
— measurement noise v 1s drawn from N(O,R), with
covariance matrix R.

e A,Q are nxn. Bisnx/[. Ris mxm. H is mxn.



Estimates and Errors

e X, €M is the estimated state at time-step k.
e X, EN" after prediction, before observation.
* Errors: e, =X, -X,

e, =X, —X,
e Error covariance matrices:

_ _ _T
P, =FElee, ]
P, = Ele e ]

 Kalman Filter’s task is to update X, P,



Time Update (Predictor)

e Update expected value of x
X, =AX,  +Bu_,

e Update error covariance matrix P
P, =AP,_A" +Q

* Previous statements were simplified
versions of the same 1dea:

x(t;)=x(t,)+ u[t,—t,]

Gz(t;) = az(tz) + (782 15, -1, ]



Measurement Update (Corrector)

* Update expected value
X, =X, +K,(z, - HX))

— innovation is  Z, — HX?{

Update error covariance matrix

P, = (I-K H)P;
 Compare with previous form
xX(t3) = X(6;) + K(8,)(z = x(£3))
07 (t;) = 1= K(1;))0° (1;)



The Kalman Gain

e The optimal Kalman gain K, 1s
K =PH HP.H +R)"
P.H
" HP H' +R

 Compare with previous form

- 0'(5)
) = )+ o




Extended Kalman Filter

* Suppose the state-evolution and
measurement equations are non-linear:

X, = (X0 )+ W,

Z, =h(X,)+V,

— process noise w 1s drawn from N(0,Q), with
covariance matrix Q.

— measurement noise v 1s drawn from N(O,R),
with covariance matrix R.



The Jacobian Matrix

e For a scalar function y=f(x),
Ay = f(x)Ax
e For a vector function y=f(x),

Ay = JAX =

Ay
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[_1inearize the Non-Linear

e Let A be the Jacobian of f with respect to Xx.

dof .
Aij = J (XU )
X .
* Let H be the Jacobian of 4 with respect to X.
Jh,
Hij =—(X})
ox ;

* Then the Kalman Filter equations are almost
the same as before!



EKF Update Equations

e Predictor step: )A(; = f(X )

P.=AP_A" +Q
» Kalman gain: K, =P H' HP,H' +R)”'

 Corrector step: X, =X, +K,(z, — h(X,))

P, = (I-K H)P;



