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Model Learning for Autonomous Robots

• Goal: To increase the effectiveness of autonomous mobile
robots

• Plan: Enable mobile robots to autonomously learn
models of their sensors and actions .
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Overview

• Action and sensor models are typically calibrated
manually: laborious and brittle

• Robot in novel environment might encounter unfamiliar
terrain or lighting conditions

• Parts may wear down over time

• Goal: Start without accurate estimate of either model

• Technique is implemented and tested in:
• One-dimensional scenario: Sony Aibo ERS-7
• Aibo in two-dimensional area
• Second robotic platform: an autonomous car

Daniel Stronger Autonomous Sensor and Action Model Learning



Introduction
Model Learning on a Sony Aibo

Model Learning on an Autonomous Car
Conclusions

Learning in One Dimension
Learning in Two Dimensions: Challenges
Addressing the Challenges
Results

Outline

1 Introduction

2 Model Learning on a Sony Aibo
Learning in One Dimension
Learning in Two Dimensions: Challenges
Addressing the Challenges
Results

3 Model Learning on an Autonomous Car
The Autonomous Car
Methods
Experimental Results

4 Conclusions
Related Work
Summary and Future Work

Daniel Stronger Autonomous Sensor and Action Model Learning



Introduction
Model Learning on a Sony Aibo

Model Learning on an Autonomous Car
Conclusions

Learning in One Dimension
Learning in Two Dimensions: Challenges
Addressing the Challenges
Results

Test-bed Robotic Platform
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Example: Learning in One Dimension

• Consider a setting with the following properties:
• The set of world states: Continuous , one-dimensional

• One sensor: Readings correspond to world states

• Range of actions: Correspond to rates of change

• Actions and sensors suffer from random noise

World State 1−D World

Vel.

Sensor Action

Agent
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Experimental Setup

distance
sensor input

• Sensor model maps landmark height in image to
distance

• Mapping derived from camera specs not accurate

• Action model maps parametrized walking action , W(x),
to velocity

• Parameter x corresponds to attempted velocity , not
accurate because of friction and joint behavior
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The Sensor and Action Models

• Each model informs an estimate of the world state:

• The sensor model maps an observation to a world state

xs(tk ) = S(obsk )

• The action model maps an action C(t) to a velocity

xa(t) = x(0) +

∫ t

0
A(C(s)) ds

• Goal is to learn two model functions, A and S

• Use polynomial regression as a function approximator
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Learning a Sensor Model

• Assume a given action model is accurate

• Consider ordered pairs (obsk , xa(tk ))

• Fit polynomial to data

Data Points
Sensor Model (S)

obs

xa
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Learning an Action Model

• Assume a given sensor model is accurate

• Plot xs(t) against time

t

Data Points

xs
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Learning an Action Model

• Assume a given sensor model is accurate

• Plot xs(t) against time

t
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Learning an Action Model (cont.)

• Compute action model that minimizes the error

• Problem equivalent to another multivariate regression

t

Data Points

xs

Best Fit, with
Slope = A(C(t))
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Learning Both Models Simultaneously

• Given very little to start with, learn both models

• Maintain both state estimates , xs(t) and xa(t)

• Each one is used to fit the other model

• Both models grow in accuracy through bootstrapping
process

• Use weighted regression
• More recent points weighted higher
• wi = γn−i , γ < 1
• Can still be computed incrementally
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Learned Models

• Measure actual models with stopwatch and ruler

• Use optimal scaling to evaluate learned models

Measured Action Model:
Learned Action Model:

Vel.

Action Command

Learned Sensor Model:
Measured Sensor Model:

Beacon Height

Dist.

• Sensor model average error: 70.4 mm, 2.9% of range

• Action model average error: 29.6 mm/s, 4.9% of range
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Learning in Two Dimensions

• Robot learns while traversing rectangular field
• Combinations of forward, sideways, and turning motion
• Field has four known color-coded cylindrical landmarks
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Learning in Two Dimensions

• Robot learns while traversing rectangular field
• Combinations of forward, sideways, and turning motion
• Field has four known color-coded cylindrical landmarks

d
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Aibo in Two Dimensions: Sensor Model

• Sensor model maps distance to landmark to distribution
of observed height in image

• Model includes polynomial function , f (dist(s))

• Also, the variance of random noise added to image
heights

• Additional variance parameter for landmark’s horizontal
angle
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Aibo in Two Dimensions: Action Model

• Actions correspond to attempted combinations of forward,
sideways, and turning velocities

• Attempted velocities control step size, direction

• Inaccuracies due to friction, joint behavior

• Action model maps attempted velocities to actual
velocities

• Discrete set of 40 actions used
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Challenges

• This problem presents many challenges:

• How do we incorporate actions and sensations into the
world state?

• For state estimation, Kalman filtering

• How do we determine what models are most consistent
with the observed data?

• For maximum likelihood parameter estimation, the
Expectation-Maximization (EM) algorithm
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Kalman Filtering

• Kalman filter maintains successive state estimates
• Represents mean and covariance of distribution

Uncertainty
State

Landmark
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Kalman Filtering

• Kalman filter maintains successive state estimates
• Represents mean and covariance of distribution

Uncertainty
State

Landmark

Distance Observation
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Kalman Filtering

• Kalman filter maintains successive state estimates
• Represents mean and covariance of distribution

Landmark

Observation
Update
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• Kalman filter maintains successive state estimates
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Kalman Filtering

• Kalman filter maintains successive state estimates
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Maximum Likelihood Estimation

• Known: robot’s actions and observations

• Hidden variables: world state over time

• Goal is to learn system parameters : action and sensor
models

• Approach: Find models with maximum likelihood of
producing observed data with the EM Algorithm

• E-step: Given models, find probability distribution over
world state

• M-step: Given distribution, find maximum likelihood
models

• Alternate until convergence
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Learning the Robot’s Models

• The E-step determines a probability distribution over the
robot’s pose over time

• The Extended Kalman Filter and Smoother (EKFS)
approximates these distributions as multivariate Gaussians

• Definition of M-step: New parameters maximize expected
log likelihood of observations with respect to E-step
distribution

• Adapting the M-step to learn these models is a
contribution of this work
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Adapting the M-step

• Given E-step distribution p̂ and observations O, find
parameters λ that maximize Ep̂[log p(O|λ)]

• Equivalently, find the action model, a, that maximizes:

T∑

t=1

∫

st−1,st

p̂(st−1, st )

︸ ︷︷ ︸

expected

log p(st |st−1, a)
︸ ︷︷ ︸

action likelihood

dst−1dst

• and the sensor model, b, that maximizes:

T∑

t=1

∫

st

p̂(st)

︸ ︷︷ ︸

expected

log p(ot |st , b)
︸ ︷︷ ︸

observation likelihood

dst
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Learning the Sensor Model

• According to M-step, must find sensor model b that
maximizes

∑T
t=1

∫

st
p̂(st ) log p(ot |st , b) dst

• Equivalently, find sensor model function f that minimizes:

T∑

t=1

∫

st

p̂(st)

︸ ︷︷ ︸

weighted mean

(f (dist(st)) − ot)
2

︸ ︷︷ ︸

squared error

dst

• Minimize the error with weighted polynomial regression
• Solution approximated by drawing samples from p̂(st)

• New variances are model’s weighted mean square errors

• Additional derivation yields new velocities for each action
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Experimental Validation

• Experiments were performed on the Aibo and in simulation
• Simulator models the robot’s pose over time with noisy

actions and observations

• Random actions were chosen with certain constraints:
• Each chosen action was executed for five seconds at a time
• The robot stays on the field
• Actions are evenly represented

• Actual action and sensor models were measured
• Compared to learned models

• Time for data collection: 25 minutes ; Learning on real
world data:10 minutes ; On simulated data: 1 hour
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The Learned Sensor Model
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Learned Standard Deviations

Std. Dev Starting Actual Learned
Real Height (pix) 10.0 1.59 1.69
Real Angle (rad) 0.2 0.027 0.012

Sim. Height (pix) 10.0 1.0 0.980
Sim. Angle (rad) 0.2 0.5 0.474

• Error in real angle standard deviation likely caused by
relative accuracy of angle observations
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The Learned Action Model

Velocity Avg. Error Compared to Range
Real Angular 0.135 rad/s 3.2%

Sim. Forwards 18.34 mm/s 2.2%

Sim. Sideways 23.06 mm/s 3.2%

Sim. Angular 0.086 rad/s 2.7%

• By comparison, attempted angular velocities have average
error of 0.333 rad/s or 7.9%
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The Autonomous Car

• Self-driving car provides many challenges for
autonomous model learning

• Actions lead to accelerations, angular velocity:
• Throttle, brake, and steering position

• Sensors provide information about pose and map:
• Three-dimensional LIDAR

• Again start without accurate estimate of either model
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Action Model

• Example model of acceleration , a:

at = C1 + C2throttlet + C3velt + C4veltbraket

• And angular velocity , ω:

ωt = C1velt + C2veltsteert
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Three-Dimensional LIDAR

• The Velodyne LIDAR sensor:

• 64 lasers return distance readings

• Each laser is at a different vertical angle and different
horizontal offset

• Unit spins around vertical axis at 10Hz
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Autonomous Car Challenges

• Structure of environment is unknown
• Component of world state

• High bandwidth sensor: perceptual redundancy

Estimate
World State

Action
Knowledge

Sensory
Input

Action
Model

Model
Sensor
Inverse

• Plan: Learn the sensor model first

• Assumption: Nearby angles have similar distances
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Learning the Sensor Model

• Top view of uncalibrated laser projections
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Learning the Sensor Model

• Consider pairs of vertically adjacent lasers
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Learning the Sensor Model

• Normalized cross-correlation identifies the angle difference
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Learning the Sensor Model

• Process yields a relative horizontal angle for each laser
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Identifying Car Motion

• Matching scans at consecutive times yields the car’s
motion

• Transformation is determined by Iterative Closest Point

Scan Motion

Car Motion

Time t +   t:
Time t:
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Learning the Action Model

• Given car motion estimates from ICP:

• Determine overall orientation of Velodyne
• Define “forwards” to be the car’s median direction

• Combine with action command to train action model

• Learned action model yields more accurate car motion
estimates

• New motion estimates are used as starting points for ICP in
iterative procedure
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Experimental Setup

• Car collected data while driving autonomously for 200
seconds

• Sensor model evaluated by comparison to ground truth:
• Horizontal angles calibrated manually by Velodyne

• For ground truth motions, Applanix sensor was used:
• Combined GPS and inertial motion sensor
• Ground truth accelerations and angular velocities

compared to action model output
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Learned Sensor Model
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Learned Action Model
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• Average acceleration error is 0.39m/s2, 6.8% of range

• Average angular velocity error is 0.74◦/s, 6.4% of range
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Related Work

• Developmental Robotics:
• [Pierce and Kuipers, ’97; Weng et al., ’01; Oudeyer et al.,

’04; Olsson et al., ’06]

• Learning a sensor model:
• [Tsai, ’86; Moravec and Blackwell, ’93; Hahnel et al., ’04]

• Learning an action model:
• [Roy and Thrun, ’99; Martinelli et al., ’03; Duffert and

Hoffmann, ’05]

• Dual estimation for Kalman filters:
• [Ghahramani and Roweis, ’99; Briegel and Tresp, ’99; de

Freitas et al., ’99]
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Summary

• Developed novel methodology that enables a mobile robot
to autonomously learn action and sensor models

• Method validated on:

• Sony Aibo in one-dimensional scenario

• Aibo and simulation in two dimensions

• Autonomous car
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Future Work

• Adapt method to other robots, more detailed models

• Explore possibilities for learning the features

• Learn about shapes, affordances of environmental objects

• Incorporate curiosity mechanisms
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• Thanks: UT Austin Villa and Austin Robot Technology
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Aibo in One Dimension: Additional Results

• Tried three different functions for the initial action model
estimate, A0

A (c) = c0 0A (c) = Sgn(c) 0A (c) = 1
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Aibo in One Dimension: Additional Results

• Tried three different functions for the initial action model
estimate, A0

• Ran 15 trials on each starting point

• Recorded number of successes, average errors

• Even with no information (A0(c) = 1), success in 10/15
trials

A0 Sensor Model (mm) Action Model (mm/s) Success Rate

A0(c) = c 70.4 ± 13.9 29.6 ± 12.4 15/15
A0(c) = Sgn(c) 85.3 ± 24.5 31.3 ± 9.2 15/15
A0(c) = 1 88.6 ± 11.5 27.3 ± 6.2 10/15

Daniel Stronger Autonomous Sensor and Action Model Learning



Introduction
Model Learning on a Sony Aibo

Model Learning on an Autonomous Car
Conclusions

Related Work
Summary and Future Work

Additional Results: EM in one dimension

• Goal: Apply EM-based algorithm to Aibo in
one-dimensional domain

• Action model: Table-based function from actions to
forwards velocities

• Sensor model: Polynomial from landmark distance to
image height

• Results:

• Average sensor model error: 0.83 pixels

• Average action model error: 22.1 mm/s

Daniel Stronger Autonomous Sensor and Action Model Learning



Introduction
Model Learning on a Sony Aibo

Model Learning on an Autonomous Car
Conclusions

Related Work
Summary and Future Work

Learning the Action Model

• In the M-step, for each action, A, must maximize:

∑

t:c(t)=A

∫

st−1,st

p̂(st−1, st ) log p(st |st−1, a) dst−1dst

• Action model is determined by µA, the mean pose
displacement caused by action A over one time-step.

• Derivation yields an expression for µ∗

A, the maximizing
displacement:

1
|{t : c(t) = A}|

∑

t:c(t)=A

∫

st−1,st

p̂(st−1, st ) d(st−1, st)
︸ ︷︷ ︸

displacement

dst−1dst

Daniel Stronger Autonomous Sensor and Action Model Learning



Introduction
Model Learning on a Sony Aibo

Model Learning on an Autonomous Car
Conclusions

Related Work
Summary and Future Work

Aibo in 1D: Learning Both Models

• Ramping up process

tS A tA 0
t = 0

t = t

t = 2tstart

start
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Aibo in 1D: Estimates Converge

• Over time, xs(t) and xa(t) come into stronger agreement

Time (s)

x(t)
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Aibo in 1D: Learning Curves

• Average fitness of model over all 15 runs over time

 0
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