Autonomous Sensor and Action Model Learning for Mobile Robots

Daniel Stronger

Learning Agents Research Group Department of Computer Sciences The University of Texas at Austin

Dissertation Defense June 19, 2008

< □ > < 同 > < 回 > < 回 > < 回 >

Model Learning for Autonomous Robots

Goal: To increase the effectiveness of autonomous mobile robots

• Plan: Enable mobile robots to autonomously learn models of their sensors and actions.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Action and Sensor Models

· Mobile robots rely on models of their actions and sensors

Action and Sensor Models

• Mobile robots rely on models of their actions and sensors

Action and Sensor Models

• Mobile robots rely on models of their actions and sensors

Overview

- Action and sensor models are typically calibrated manually: **laborious and brittle**
 - Robot in novel environment might encounter unfamiliar terrain or lighting conditions
 - · Parts may wear down over time
- Goal: Start without accurate estimate of either model
- Technique is implemented and tested in:
 - One-dimensional scenario: Sony Aibo ERS-7
 - Aibo in two-dimensional area
 - Second robotic platform: an autonomous car

< □ > < 同 > < 回 > < 回 > < 回 >

Outline

Introduction

2 Model Learning on a Sony Aibo Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

3 Model Learning on an Autonomous Car Methods

4 Conclusions

Related Work Summary and Future Work

< ロ > < 同 > < 回 > < 回 >

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Test-bed Robotic Platform

Daniel Stronger Autonomous Sensor and Action Model Learning

・ロト ・聞ト ・ヨト ・ヨト

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Example: Learning in One Dimension

- Consider a setting with the following properties:
 - The set of world states: Continuous, one-dimensional
 - One sensor: Readings correspond to world states
 - Range of actions: Correspond to rates of change
 - Actions and sensors suffer from random noise

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Experimental Setup

- Sensor model maps landmark height in image to distance
 - Mapping derived from camera specs not accurate
- Action model maps parametrized walking action, W(x), to velocity
 - Parameter x corresponds to attempted velocity, not accurate because of friction and joint behavior

・ロット (雪) (日) (日)

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

The Sensor and Action Models

- Each model informs an estimate of the world state:
 - · The sensor model maps an observation to a world state

 $x_{s}(t_{k}) = S(obs_{k})$

• The action model maps an action *C*(*t*) to a velocity

$$x_a(t) = x(0) + \int_0^t A(C(s)) \, ds$$

- Goal is to learn two model functions, A and S
 - Use polynomial regression as a function approximator

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Learning a Sensor Model

- Assume a given action model is accurate
- Consider ordered pairs $(obs_k, x_a(t_k))$
- Fit polynomial to data

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Learning an Action Model

- Assume a given sensor model is accurate
- Plot x_s(t) against time

< ロ > < 同 > < 回 > < 回 >

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Learning an Action Model

- Assume a given sensor model is accurate
- Plot x_s(t) against time

æ

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Learning an Action Model (cont.)

- Compute action model that minimizes the error
- Problem equivalent to another multivariate regression

< ロ > < 同 > < 回 > < 回 >

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Learning Both Models Simultaneously

- Given very little to start with, learn both models
- Maintain both state estimates, $x_s(t)$ and $x_a(t)$
- Each one is used to fit the other model
- Both models grow in accuracy through bootstrapping process
- Use weighted regression
 - More recent points weighted higher
 - $W_i = \gamma^{n-i}, \gamma < 1$
 - Can still be computed incrementally

< ロ > < 同 > < 回 > < 回 > .

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Learned Models

- · Measure actual models with stopwatch and ruler
- Use optimal scaling to evaluate learned models

- Sensor model average error: 70.4 mm, 2.9% of range
- Action model average error: 29.6 mm/s, 4.9% of range

< ロ > < 同 > < 回 > < 回 >

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Learning in Two Dimensions

- · Robot learns while traversing rectangular field
 - · Combinations of forward, sideways, and turning motion
 - · Field has four known color-coded cylindrical landmarks

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Learning in Two Dimensions

- Robot learns while traversing rectangular field
 - · Combinations of forward, sideways, and turning motion
 - · Field has four known color-coded cylindrical landmarks

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Learning in Two Dimensions

- Robot learns while traversing rectangular field
 - · Combinations of forward, sideways, and turning motion
 - · Field has four known color-coded cylindrical landmarks

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Aibo in Two Dimensions: Sensor Model

- Sensor model maps distance to landmark to distribution of observed height in image
- Model includes **polynomial function**, *f*(dist(*s*))
- Also, the variance of random noise added to image heights
- Additional variance parameter for landmark's horizontal angle

< ロ > < 同 > < 回 > < 回 > .

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Aibo in Two Dimensions: Action Model

- Actions correspond to attempted combinations of forward, sideways, and turning velocities
 - Attempted velocities control step size, direction
 - Inaccuracies due to friction, joint behavior
 - Action model maps attempted velocities to actual velocities
 - Discrete set of 40 actions used

< ロ > < 同 > < 回 > < 回 > < □ > <

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Challenges

- This problem presents many challenges:
 - How do we incorporate actions and sensations into the world state?
 - For state estimation, Kalman filtering
 - How do we determine what models are most consistent with the observed data?
 - For maximum likelihood parameter estimation, the Expectation-Maximization (EM) algorithm

< □ > < 同 > < 回 > < 回 > < 回 >

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Kalman Filtering

- · Kalman filter maintains successive state estimates
 - Represents mean and covariance of distribution

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Kalman Filtering

- · Kalman filter maintains successive state estimates
 - Represents mean and covariance of distribution

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Kalman Filtering

- · Kalman filter maintains successive state estimates
 - · Represents mean and covariance of distribution

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Kalman Filtering

- · Kalman filter maintains successive state estimates
 - Represents mean and covariance of distribution

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Kalman Filtering

- · Kalman filter maintains successive state estimates
 - Represents mean and covariance of distribution

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Maximum Likelihood Estimation

- Known: robot's actions and observations
- Hidden variables: world state over time
- Goal is to learn system parameters: action and sensor models
- Approach: Find models with maximum likelihood of producing observed data with the EM Algorithm
 - E-step: Given models, find probability distribution over world state
 - M-step: Given distribution, find maximum likelihood models
 - Alternate until convergence

・ ロ ト ・ 雪 ト ・ 目 ト

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Maximum Likelihood Estimation

- Known: robot's actions and observations
- Hidden variables: world state over time
- Goal is to learn system parameters: action and sensor models
- Approach: Find models with maximum likelihood of producing observed data with the EM Algorithm
 - E-step: Given models, find probability distribution over world state
 - M-step: Given distribution, find maximum likelihood models
 - Alternate until convergence

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Maximum Likelihood Estimation

- Known: robot's actions and observations
- Hidden variables: world state over time
- Goal is to learn system parameters: action and sensor models
- Approach: Find models with maximum likelihood of producing observed data with the EM Algorithm
 - E-step: Given models, find probability distribution over world state
 - M-step: Given distribution, find maximum likelihood models
 - Alternate until convergence

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Learning the Robot's Models

- The E-step determines a probability distribution over the robot's pose over time
 - The Extended Kalman Filter and Smoother (EKFS) approximates these distributions as multivariate Gaussians
- Definition of M-step: New parameters maximize expected log likelihood of observations with respect to E-step distribution
 - Adapting the M-step to learn these models is a contribution of this work

< ロ > < 同 > < 回 > < 回 > .

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Adapting the M-step

- Given E-step distribution p̂ and observations O, find parameters λ that maximize E_{p̂}[log p(O|λ)]
- Equivalently, find the action model, *a*, that maximizes:

$$\sum_{t=1}^{T} \underbrace{\int_{s_{t-1},s_t} \hat{\mathbf{p}}(s_{t-1},s_t)}_{\text{expected}} \log \underbrace{\mathbf{p}(s_t | s_{t-1},a)}_{\text{action likelihood}} ds_{t-1} ds_t$$

• and the sensor model, *b*, that maximizes:

$$\sum_{t=1}^{T} \int_{s_t} \hat{p}(s_t) \log \underbrace{p(o_t | s_t, b)}_{\text{observation likelihood}} ds_t$$
Daniel Stronger
Autonomous Sensor and Action Model Learning

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Learning the Sensor Model

- According to M-step, must find sensor model *b* that maximizes $\sum_{t=1}^{T} \int_{s_t} \hat{p}(s_t) \log p(o_t|s_t, b) ds_t$
- Equivalently, find sensor model function *f* that minimizes:

$$\sum_{t=1}^{T} \underbrace{\int_{s_t} \hat{p}(s_t)}_{\text{weighted mean}} \underbrace{(f(\operatorname{dist}(s_t)) - o_t)^2}_{\text{squared error}} ds_t$$

- Minimize the error with weighted polynomial regression
 - Solution approximated by drawing samples from p(st)
- New variances are model's weighted mean square errors
- Additional derivation yields new velocities for each action

< 日 > < 同 > < 回 > < 回 > < □ > <

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Experimental Validation

- · Experiments were performed on the Aibo and in simulation
 - Simulator models the robot's pose over time with noisy actions and observations
- Random actions were chosen with certain constraints:
 - Each chosen action was executed for five seconds at a time
 - The robot stays on the field
 - Actions are evenly represented
- Actual action and sensor models were measured
 - · Compared to learned models
- Time for data collection: 25 minutes; Learning on real world data:10 minutes; On simulated data: 1 hour

< ロ > < 同 > < 回 > < 回 >

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

The Learned Sensor Model

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

Learned Standard Deviations

Std. Dev	Starting	Actual	Learned
Real Height (pix)	10.0	1.59	1.69
Real Angle (rad)	0.2	0.027	0.012
Sim. Height (pix)	10.0	1.0	0.980
Sim. Angle (rad)	0.2	0.5	0.474

• Error in real angle standard deviation likely caused by relative accuracy of angle observations

< ロ > < 同 > < 回 > < 回 > .

Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results

The Learned Action Model

Velocity	Avg. Error	Compared to Range
Real Angular	0.135 rad/s	3.2%
Sim. Forwards	18.34 mm/s	2.2%
Sim. Sideways	23.06 mm/s	3.2%
Sim. Angular	0.086 rad/s	2.7%

 By comparison, attempted angular velocities have average error of 0.333 rad/s or 7.9%

< □ > < 同 > < 回 > < 回 > < 回 >

The Autonomous Car Methods Experimental Results

Outline

- Model Learning on a Sony Aibo Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results
- 3 Model Learning on an Autonomous Car The Autonomous Car Methods Experimental Results

4

- Conclusions
 - Related Work Summary and Future Work

< □ > < 同 > < 回 > < 回 > < 回 >

The Autonomous Car Methods Experimental Results

The Autonomous Car

 Self-driving car provides many challenges for autonomous model learning

- · Actions lead to accelerations, angular velocity:
 - Throttle, brake, and steering position
- Sensors provide information about pose and map:
 - Three-dimensional LIDAR
- Again start without accurate estimate of either model

< ロ > < 同 > < 回 > < 回 >

The Autonomous Car Methods Experimental Results

Action Model

• Example model of acceleration, a:

$$a_t = C_1 + C_2$$
throttle_t + C_3 vel_t + C_4 vel_tbrake_t

And angular velocity, ω:

$$\omega_t = C_1 \operatorname{vel}_t + C_2 \operatorname{vel}_t \operatorname{steer}_t$$

・ロット (雪) (日) (日)

э

The Autonomous Car Methods Experimental Results

Three-Dimensional LIDAR

• The Velodyne LIDAR sensor:

・ロト ・聞 ト ・ヨ ト ・ ヨ ト

- 64 lasers return distance readings
- Each laser is at a different vertical angle and different horizontal offset
- Unit spins around vertical axis at 10Hz

The Autonomous Car Methods Experimental Results

Autonomous Car Challenges

- Structure of environment is unknown
 - Component of world state
- High bandwidth sensor: perceptual redundancy

- Plan: Learn the sensor model first
- Assumption: Nearby angles have similar distances

・ロット (雪) (日) (日)

The Autonomous Car Methods Experimental Results

Learning the Sensor Model

Top view of uncalibrated laser projections

The Autonomous Car Methods Experimental Results

Learning the Sensor Model

Consider pairs of vertically adjacent lasers

The Autonomous Car Methods Experimental Results

Learning the Sensor Model

Normalized cross-correlation identifies the angle difference

Daniel Stronger Autonomous Sensor and Action Model Learning

< ∃→

The Autonomous Car Methods Experimental Results

Learning the Sensor Model

Process yields a relative horizontal angle for each laser

Daniel Stronger Autonomous Sensor and Action Model Learning

.⊒ →

The Autonomous Car Methods Experimental Results

Identifying Car Motion

- Matching scans at consecutive times yields the car's motion
 - Transformation is determined by Iterative Closest Point

Daniel Stronger Autonomous Sensor and Action Model Learning

< □ > < 同 >

э

The Autonomous Car Methods Experimental Results

Learning the Action Model

- Given car motion estimates from ICP:
 - Determine overall orientation of Velodyne
 - Define "forwards" to be the car's median direction
 - Combine with action command to train action model
- Learned action model yields more accurate car motion estimates
 - New motion estimates are used as starting points for ICP in iterative procedure

・ロッ ・雪 ・ ・ ヨ ・ ・

-

The Autonomous Car Methods Experimental Results

Experimental Setup

- Car collected data while driving autonomously for 200 seconds
- Sensor model evaluated by comparison to ground truth:
 - · Horizontal angles calibrated manually by Velodyne
- For ground truth motions, Applanix sensor was used:
 - · Combined GPS and inertial motion sensor
 - Ground truth accelerations and angular velocities compared to action model output

< ロ > < 同 > < 回 > < 回 > .

The Autonomous Car Methods Experimental Results

Learned Sensor Model

Average horizontal angle error is 0.54°, 3.0% of range

Daniel Stronger Autonomous Sensor and Action Model Learning

ъ

The Autonomous Car Methods Experimental Results

Learned Action Model

- Average acceleration error is 0.39m/s², 6.8% of range
- Average angular velocity error is 0.74°/s, 6.4% of range

・ロト ・聞ト ・ ヨト ・ ヨト

Related Work Summary and Future Work

Outline

Introduction

- Model Learning on a Sony Aibo Learning in One Dimension Learning in Two Dimensions: Challenges Addressing the Challenges Results
- Model Learning on an Autonomous Car The Autonomous Car Methods
 Experimental Results

4 Conclusions

Related Work Summary and Future Work

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と

Related Work Summary and Future Work

Related Work

- Developmental Robotics:
 - [Pierce and Kuipers, '97; Weng et al., '01; Oudeyer et al., '04; Olsson et al., '06]
- Learning a sensor model:
 - [Tsai, '86; Moravec and Blackwell, '93; Hahnel et al., '04]
- Learning an action model:
 - [Roy and Thrun, '99; Martinelli et al., '03; Duffert and Hoffmann, '05]
- Dual estimation for Kalman filters:
 - [Ghahramani and Roweis, '99; Briegel and Tresp, '99; de Freitas et al., '99]

< □ > < 同 > < 回 > < 回 > < 回 >

Related Work Summary and Future Work

Summary

- Developed novel methodology that enables a mobile robot to autonomously learn action and sensor models
- Method validated on:
 - Sony Aibo in one-dimensional scenario
 - Aibo and simulation in two dimensions
 - Autonomous car

< □ > < 同 > < 回 > < 回 > < 回 >

-

Related Work Summary and Future Work

Future Work

- Adapt method to other robots, more detailed models
 - Explore possibilities for learning the features

- Learn about shapes, affordances of environmental objects
- Incorporate curiosity mechanisms

< □ > < 同 > < 回 > < 回 > < 回 >

Related Work Summary and Future Work

Questions?

• □ > • @ > • □ > • □ >

Thanks: UT Austin Villa and Austin Robot Technology

Related Work Summary and Future Work

Aibo in One Dimension: Additional Results

• Tried three different functions for the **initial action model** estimate, *A*₀

< ロ > < 同 > < 回 > < 回 >

Related Work Summary and Future Work

Aibo in One Dimension: Additional Results

- Tried three different functions for the **initial action model** estimate, *A*₀
- Ran 15 trials on each starting point
- Recorded number of successes, average errors
- Even with no information (A₀(c) = 1), success in 10/15 trials

A ₀	Sensor Model (mm)	Action Model (mm/s)	Success Rate
$A_0(c)=c$	$\textbf{70.4} \pm \textbf{13.9}$	29.6 ± 12.4	15/15
$A_0(c) = \operatorname{Sgn}(c)$	85.3 ± 24.5	31.3 ± 9.2	15/15
$A_0(c) = 1$	88.6 ± 11.5	27.3 ± 6.2	10/15

・ロッ ・雪 ・ ・ ヨ ・ ・

3

Related Work Summary and Future Work

Additional Results: EM in one dimension

- Goal: Apply EM-based algorithm to Aibo in one-dimensional domain
 - Action model: Table-based function from actions to forwards velocities
 - Sensor model: Polynomial from landmark distance to image height
- Results:
 - Average sensor model error: 0.83 pixels
 - Average action model error: 22.1 mm/s

< ロ > < 同 > < 回 > < 回 > < □ > <

-

Related Work Summary and Future Work

Learning the Action Model

• In the M-step, for each action, A, must maximize:

$$\sum_{t:c(t)=A} \int_{s_{t-1},s_t} \hat{p}(s_{t-1},s_t) \log p(s_t|s_{t-1},a) \, ds_{t-1} \, ds_t$$

- Action model is determined by µ_A, the mean pose displacement caused by action A over one time-step.
- Derivation yields an expression for μ^{*}_A, the maximizing displacement:

$$\frac{1}{|\{t:c(t)=A\}|}\sum_{t:c(t)=A}\int_{s_{t-1},s_t}\hat{p}(s_{t-1},s_t)\underbrace{d(s_{t-1},s_t)}_{\text{displacement}}ds_{t-1}ds_t$$

< □ > < 同 > < 回 > < 回 > < 回 >

Related Work Summary and Future Work

Aibo in 1D: Learning Both Models

Ramping up process

Daniel Stronger Autonomous Sensor and Action Model Learning

< □ > < 同 > < 回 > < 回 > < 回 >

3

Related Work Summary and Future Work

Aibo in 1D: Estimates Converge

• Over time, $x_s(t)$ and $x_a(t)$ come into stronger agreement

Related Work Summary and Future Work

Aibo in 1D: Learning Curves

Average fitness of model over all 15 runs over time

< ロ > < 同 > < 回 > < 回 >