Ship Patrol: Multiagent Patrol under Complex Environmental Conditions

Noa Agmon, Daniel Urieli and Peter Stone The University of Texas at Austin

Ship Patrol – How It All Began...

UT Austin L earning A gents R esearch G roup

Outline

- Multiagent patrol
 - Current strategies, and motivation for a new strategy
- The generalized multiagent patrol problem on graphs

- Multiagent patrol on outerplanar graphs
 - $\circ~$ Heuristic algorithm for solving the problem
- Empirical evaluation
 - \circ Ship simulator

Multiagent Patrol

 Team of k agents repeatedly visit a target area to monitor change in state

• Discrete graphs, continuous paths (linear, 2D, 3D)

Different environments, different perspectives

<u>Frequency-based patrol</u>: Optimize frequency criteria
 e.g. [Chevaleyre 04, Machado et al. 03, Elmaliah et al. 09, Ahmadi&Stone 06]

- <u>Patrol in adversarial environments</u>: Detect adversary
 e.g. [Basilico et al. 09, Agmon et al. 08]
- Here: Multiagent frequency based patrol on graphs
 - o Goal: Minimize Idleness

Multiagent Patrol Strategies

SingleCycle:
 All agents travel along one (Hamiltonian) cycle
 Travel time N, idleness is N/k (uniform)

Multiagent Patrol Strategies

o SingleCycle:

All agents travel along one (Hamiltonian) cycle

• Travel time N, idleness is N/k (uniform)

• UniPartition:

Each agent patrols along a part of the graph

• Ideally, uniform idleness

Multiagent Patrol Strategies

o SingleCycle:

All agents travel along one (Hamiltonian) cycle

• Travel time N, idleness is N/k (uniform)

• UniPartition:

Each agent patrols along a part of the graph

○ Ideally, uniform idleness

Generally, SingleCycle and UniPartition are intractable

• Optimal solution under environment and agent sensing and movement assumptions [Elmaliah et al. 2008]

Complex Environments

- Example: Marine environments, rough terrains
- Travel time does not correspond to distance
- No triangle inequality
 - Cannot use trivial approximations for determining SingleCycle

Learning Agents Research Group

UniPartition could also produce poor results

• Do the two strategies cover all interesting cases?

 $L_{\text{earning}} A_{\text{gents}} R_{\text{esearch}} G_{\text{roup}}$

MultiPartition Strategy

- The agents are divided between cycles
- Can have more than one agent per cycle

JT Austin

• Given weighted graph G, k agents, desired worst idleness f

- Can G be divided into $m \le k$ cyclic tours such that:
 - Each tour C_i is assigned k_i agents, $\sum_m k_i = k$
 - The worst idleness in each cycle is at most f

- Given weighted graph G, k agents, desired worst idleness f
- Can G be divided into $m \le k$ cyclic tours such that:
 - Each tour C_i is assigned k_i agents, $\sum_m k_i = k$
 - The worst idleness in each cycle is at most f

Problem	Tours	Time Complexity
Multiagent Graph Patrol (MGP)	Each tour is cyclic	NP-Complete

• Given weighted graph G, k agents, desired worst idleness f

- Can G be divided into $m \le k$ cyclic tours such that:
 - Each tour C_i is assigned k_i agents, $\sum_m k_i = k$
 - The worst idleness in each cycle is at most f

Problem	Tours	Time Complexity
Multiagent Graph Patrol (MGP)	Each tour is cyclic	NP-Complete

 $L_{\text{earning}} A_{\text{gents}} R_{\text{esearch}} G_{\text{roup}}$

Practical requirement: Robots will never meet

• Given weighted graph G, k agents, desired worst idleness f

- Can G be divided into $m \le k$ cyclic tours such that:
 - Each tour C_i is assigned k_i agents, $\sum_m k_i = k$
 - The worst idleness in each cycle is at most f

Problem	Tours	Time Complexity
Multiagent Graph Patrol (MGP)	Each tour is cyclic	NP-Complete
Multiagent Cyclic Graph Patrol (MCGP)	Each tour is a cycle Tours are non intersecting	NP-Complete

Outerplanar Graphs

• Outerplanar graphs

- Planar graphs, all nodes adjacent to one external face
- Realistically: What if we took a cycle and added shortcuts?
 (biconnected)

JT Austin

Multiagent Patrol on Outerplanar Graphs

JT Austin

- \circ Biconnected \rightarrow Hamiltonian
- Subgraph of outerplanar is outerplanar

Multiagent Patrol on Outerplanar Graphs

- \circ Biconnected \rightarrow Hamiltonian
- Subgraph of outerplanar is outerplanar

Problem	Tours	Time Complexity
Multiagent Graph Patrol (MGP)	Each tour is cyclic	NP-Complete
Multiagent Cyclic Graph Patrol (MCGP)	Each tour is a cycle Tours are non intersecting	NP-Complete
Multiagent Patrol on Outerplanar Graphs	Each tour is a cycle Tours are non intersecting Graph is (biconnected) outerplanar	? (probably intractable)

JT Austin

Patrol Strategies in Outerplanar Graphs

- SingleCycle found in linear time
- SinglePartition exponential
- MultiPartition probably still intractable

Algorithm HeuristicDivide

Find all division of outerplanar graph into two disjoint components

- Remove every pair of edges (proven: enough)
- $\circ~$ Check for disjoint biconnected components
- $\circ~$ Done in polynomial time
- Assign k_i agents to each of resulting cycles (optimally)
- $\circ~$ Take division that improves and minimizes worst idleness

- Clockwise/counterclockwise
- $\circ~$ Take these divisions and continue recursively
- Depth of recursion: at most N
- Time complexity: O(|E|³)

HeuristicDivide - Example

8

UT Austin L earning A gents R esearch G roup

HeuristicDivide - Example

UT Austin L earning A gents R esearch G roup

HeuristicDivide - Example

UT Austin Learning Agents Research Group

HeuristicDivide - Example

UT Austin Learning Agents Research Group

- Custom-designed naval surface navigation simulator
- Realistic 2D physical models of marine environments and sea vessels
- Divided into three modules:
 - Sea Environment: Winds, water currents, waves and obstacles
 - Ship: Physical properties, sensing capabilities and actuators
 - Decision-Making: Autonomous agent that controls the ship

Empirical Evaluation – The Environment

- Environment with many combinations of subgraphs
- **|V|** = 36
- Four levels of strength of water currents and winds:
 - No winds or currents, weak, medium and strong
- Number of ships from 1 to 30

JT Austin

Empirical Evaluation – Evaluation Criteria

- Compared idleness from SingleCycle
 - Easily computable
- Performance of HeuristicDivide compared to trivial adjustment
 - Incremental change (k+1): new ship added to cycle with worst idleness
 - Decremental change (k-1): ship removed from cycle with best idleness

Empirical Evaluation – Results

- No winds/currents: HeuristicDivide always chose one cycle
- Medium/strong currents: HeuristicDivide significantly better

Learning Agents Research Group

• Weak currents: Average better, no significance

Empirical Evaluation – HeuristicDivide Results

UT Austin Learning Agents Research Group

Empirical Evaluation – HeuristicDivide Comparison

 ${}^{
m stin}$ Learning Agents Research Group

Conclusions

- New strategy for multiagent patrol: MultiPartition
- Intractable in general graphs (as other strategies)
- Hard also in very simple (outerplanar) nonlinear environments
- Heuristic algorithm empirically outperforms previous strategies in complex (marine) environments
- Future work:
 - Realistic (movement) constraints incorporated in the algorithm
 - Examine local strategies for patrol based on MultiPartition
 - $\circ~$ Learning in case of non uniform frequency constrains or of travel cost

Questions?

agmon@cs.utexas.edu

