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Abstract— This paper explores how the absence of an expected
sensor reading can be used to improve Markov localization. This
negative information usually is not being used in localization,
because it yields less information than positive information
(i.e. sensing a landmark), and a sensor often fails to detect a
landmark, even if it falls within its sensing range. We address
these difficulties by carefully modeling the sensor to avoid false
negatives. This can also be thought of as adding an additional
sensor that detects the absence of an expected landmark. We
show how such modeling is done and how it is integrated into
Markov localization. In real world experiments, we demonstrate
that a robot is able to localize in positions where otherwise it
could not and quantify our findings using the entropy of the
particle distribution. Exploiting negative information leads to a
greatly improved localization performance and reactivity.

Index Terms— Negative Information, Negative Evidence, Mo-
bile Robots, Markov Localization, Monte Carlo Localization,
Entropy

I. INTRODUCTION

The classic example of negative information was described
in the Sherlock Holmes case “Silver Blaze.” In this case, a
house has been broken into. Under such circumstances, one
would expect the watch-dog to bark. The curious incident of
the non-barking of the dog in the nighttime provides Holmes
with the information that the dog must know the burglar, allow-
ing him to solve the case. Applied to mobile robot localization,
this means that conclusions can be drawn from expected but
actually missing sensor measurements [5]. Markov localization
methods, in particular Monte Carlo localization, have proven
their power in numerous robot navigation tasks, e.g. in office
environments [1], in the museum tour guide Minerva [14],
in the highly dynamic RoboCup environment [8], and outdoor
applications in less structured environments [10]; an evaluation
of the various algorithmic approaches is given in [3].

Our work is focussed on localization based on landmarks.
Whenever a robot senses a landmark, the localization estimate
is updated using the sensor model. This sensor model is
acquired before the actual run. It describes the probability of
the measurement z given a state s (position, orientation, etc.)
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of the robot. Sensor updates only occur when landmarks are
detected. If no landmark is detected, the state estimation is
updated using (only) the motion model of the robot.

Example. Consider a robot driving down a corridor as shown
in fig. la-1d. The robot has a sensor to detect doors when it is
standing in front of one. Let us assume further that the robot
is moving to the right but is oblivious of its starting position.
As it starts to move to the right it passes and senses a door.
Given this information, it could be standing in front of either
of the doors (states sief; and Sign). As it moves on, it does
not pass another door for some time. At time ¢ = t3, if Sk
had been the true position, the robot would have had passed
another door by now. Using the negative information of not
perceiving a door, the belief based on sif can be ruled out. As
Thrun, Bugard, and Fox put it quite graphically, “not seeing
the Eiffel Tower in Paris implies that it is unlikely that we are
right next to it” [13].

We present a localization approach that incorporates such
negative information. To our knowledge, no explicit study of
using negative information in Markov localization has been
published. One difficulty is brought about by the fact that,
generally speaking, sensing a landmark constitutes a greater
information gain than not sensing one simply because there are
many positions within the robot’s environment from where the
landmark cannot be perceived. A landmark is, by definition,
something that stands out in an environment.

The other difficulty in implementing a system that uses
negative information on a real robot is that there are two main
reasons for the absence of an expected sensor reading: the
target may not be there or the sensor may simply be unable
to detect the target (due to occlusions, sensor imperfections,
imperfect image processing, etc.). Differentiating the two cases
is not a trivial task and requires careful sensor modeling. We
address this problem by considering the field of view of the
robot and by using obstacle detection to estimate occlusions.

Negative information modeling has been applied to object
tracking (see [12] for an introduction and [5] for an overview).
The event of not detecting an object is treated as evidence
that can be used to update its probability density function
[6]. In the RoboCup domain, not seeing the ball on the field



can be used to delete Monte Carlo particles in that region as
long as occlusions are considered [7]. Negative information is
also mentioned in the context of simultaneous localization and
mapping (SLAM) where it is used to adjust the confidence in
landmark candidates [10].

Outline. In section II we will show how negative information
can be incorporated into Monte Carlo localization. We will
then extend the sensor model by also modeling the probability
of non-detection events. In section III the positive impact
on localization will be shown in simulation and real world
experiments using the Sony Aibo ERS-7 robot.

II. EXPLOITING NEGATIVE INFORMATION
A. Iterative Bayesian Updating

This work is based on Markov localization for mobile robots
as described in [1], [13], [11]. The belief state of the robot
Bel(s;) at time t to be in state s; is determined by all previous
robot actions u; and observations z;. Using Bayes law and
the Markov assumption, Bel(s;) can be written as a function
depending only on the previous belief Bel(s;_1 ), the last robot
action u;_1, and the current observation z;:

Bel™ (s;) «— /p(3t|5t—17Ut—l)Bel(St—l)dSt—l (1
Bel(st) «— np(z¢|st)Bel™(s¢) (2)

with normalizing constant 7. Equation 1 shows the a priori
belief Bel™(s;) which propagates the previous belief using
the motion model of the robot. The measurement is then
incorporated into the belief as described in (2) using the sensor
model (‘sensor updating’).

In Markov localization, given an initial belief Bel(sg)
at t = tg, the robot first updates its belief using odometry
and then incorporates new sensor information. The belief is
updated iteratively in this fashion for every following time
step. In the absence of sensor readings, no sensor updating is
performed and the belief is updated solely using odometry.

B. The Notion Of Negative Information

Negative information describes the absence of a sensor
reading in a situation where a sensor reading is expected given
the current position estimate.

To integrate negative information, imagine a binary sensor
being added that fires whenever the primary sensor does not
detect a particular landmark [. Its probability of it firing is
given by:

Pz ¢lst) 3

This sensor model can be used to update the robot’s belief
whenever it fails to detect a landmark, i.e. when negative
evidence is acquired. Fig. 2 shows the probability p(z; |z, y:)
of not sensing a landmark on a RoboCup field at position
(x¢,9:) summed over all possible robot orientations. This
figure also shows that it is most likely for the robot to sense
a landmark when it is standing in the middle of the field. The
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Fig. la. (¢t = to) Illustration of a robot localizing in an office hallway.
The robot has a sensor to detect doors. At the beginning, the robot does not
know its position in the hallway (uniform belief distribution Bel*(s¢)). At
this time, no sensing of the world takes place.
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Fig. 1b. (¢t = t1) The robot has moved down the hallway and now senses
a door p(z¢|s¢) which results in the shown belief Bel*(s¢). It has two
peaks since the robot could be standing in front of either door. The previous
distribution is illustrated by the dashed line.
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Fig. lc. (¢t = t3) The robot moves on. There are no doors nearby so the
“door sensor” does not sense a door. The sensor update distribution is shown
in p(z;|s¢). This negative information is of negligible use at this position: it
does not help differentiate between the peaks.
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Fig. 1d. (¢t = t4) The robot moves on and the door sensor still does not
sense a door. Bel*(s¢) shows the belief if negative information is taken into
account, whereas Bel(s¢) shows the belief without using negative information
to better illustrate the case. As can be seen from the diagram, using negative
information allows the robot to rule out the left peak.
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Fig. 2. Probability of not sensing a landmark for a robot on a RoboCup
soccer field. For a robot located around the center of the field, it is hard to
miss landmarks.
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likelihood of not sensing a landmark is highest for positions
at the edge of the field as the robot may be facing outwards.

This rather coarse way of incorporating negative informa-
tion can be refined by taking into account the sensing range 7,
of the robot’s sensors and possible occlusions o; of landmarks.
The sensing range is the physical volume that the sensor is
monitoring. In case of a stationary robot, r; = g is constant,
for a mobile robot with a pan-tilt camera it is not. By o, we
denote a means of detecting whether or not occlusions have
occurred. In practice, this can be calculated from a map of
the environment, directly sensed by a sensor such as a laser
range finder, or derived from a model of moving objects in
the environment.

Combining the two yields the probability of not sensing an
expected landmark [/ at time ¢:

“

Whenever a landmark is not detected, it can be used in
the sensor update step of the Iterative Bayesian Updating (see
Algorithm 1).

p(zf,l|8t77”t70t)

C. Sensor Modeling For The Sony Aibo

1) Field of View: The ERS-7 is a legged robot with a
camera mounted in its head. The camera has a horizontal
opening angle of 55° and the robot’s head has 3 degrees of
freedom (neck tilt, head pan, head tilt). We abbreviate gaze
direction by ¢ = (@1, Ppan; Puiie). The sensing range is
calculated by considering the field of view (FOV) of the robot:

ﬁf\b@fé

2) Occlusion: In order to account for occlusions, we opted
for an approach that has been used successfully for detecting
obstacles, referred to as ‘visual sonar’ [4], [9]: The camera
image is scanned in vertical scan lines and unoccupied space
in the plane of the field is detected since it can only be of
green or white color (field lines). Scanning for these colors
tells the robot where obstacles are and where there is free
space which in turn can be used to determine if the visibility
of the landmark is impaired, i.e. if it is occluded by other
robot or some other obstacle. More specifically, if the expected

Algorithm 1 Iterative Bayesian updating incorporating nega-
tive evidence
1: Bel™ (s¢) «— [ p(se|si—1,u—1)Bel(si—1)dsi—1
if (landmark [ detected) then
Bel(sy) «— np(z¢|s)Bel™ (st)
else
Bel(st) «— np(2f|st, e, 0¢) Bel ™ (s¢)
end if
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landmark lies in an area where the robot has detected free
space, the likelihood of the corresponding pose estimate is
decreased. If it lies outside of the detected free space, no
inference can be made.

Taking FOV and occlusion into account, the sensor model
for not perceiving an expected landmark (equation 4) becomes:

&)

Where z; s describes the current obstacle percept and
st = (¢, yt, 0, ) the robot state consisting of the robot
pose (position ¢, y;, and orientation vJ;) and the current gaze
direction ;.

(27115t 2t 0bs)

III. EXPERIMENTAL RESULTS

The RoboCup Sony 4-Legged League serves as a test bed
for our work. In the 4-Legged League, teams of 4 Sony Aibo
ERS-7 robots play soccer against each other in a color coded
environment (see the official RoboCup web site for details:
www.robocup.org). Colored beacons (4 uniquely color coded
beacons plus a blue and a yellow goal) and the field lines
(similar to the real soccer field lines) serve the robots for
localization. In our experiment, unless otherwise stated, only
landmarks were used for localization to emphasize the effect
of using negative information.

A. Monte Carlo Localization, Implementation

This work is based on the Monte Carlo localization de-
scribed in [11] which also serves as a base line implementa-
tion. Sensor updating was extended to account for FOV and
occlusion as described. This also requires sensor updating to
be triggered by new camera images regardless of whether or
not there was a percept. Before re-sampling, the weight of an
individual particle is calculated as follows: Of all landmarks
L, the subset of landmarks L’ is detected, the subset L* is
expected but not detected, and lastly the subset L° is not
detected but was also not expected: L = L' U L* U L® and
L* N L’ = (). The probability of a particle p; is calculated by
multiplying all the likelihoods of all gathered evidences:

pi = H Sl(ameasdaaexpd)' H 51*(50, aexpd)

leL’ leL*

(6)

detected expected and not detected

The function s; is an approximation of the sensor model
and returns the likelihood of sensing the landmark [ at angle
Qmeasd fOr a particle p; that expects this landmark to be at
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Fig. 3. Incorporating negative information. White (outlined) arrows denote

particles that receive negative information and are therefore less likely than
others, i.e. their weights are being updated by negative evidence. In (1), the
effect of using negative information is shown for a robot that is well localized
and frequently sees landmarks. (2) Distribution shortly after the robot has
been displaced (kidnapped): particles facing the goal are less likely and will
eventually be eliminated from the distribution.

Orexpd- Function s7 models the probability of not sensing the
expected landmark [ € L* given the current sensing range as
determined by ¢, the robot pose associated with p;, and the
bstacle percept Zobs-

B. Preliminary Experiment

For illustration purposes, we conducted a preliminary ex-
periment in simulation. In this experiment, the robot starts
out being well localized and is then displaced to a position
where it is not able to get any new sensor information (fig. 3).
It is similar to the kidnapped robot problem, but here we
emphasize the moment right after the robot is displaced rather
than investigating how fast it can recover. The effect of
the displacement on the Monte Carlo particle distribution is
the following: particles which represent the previous belief
become less likely when negative information is taken into
account (i.e. the information that the landmark is not detected
where it is expected). The distribution diverges towards parti-
cles which were less likely prior to the displacement. Particles
representing the previous belief are eventually eliminated from
the distribution because they are inconsistent with the current
(negative) sensor data. Particles which differ from the previous
belief just enough to be compatible with the current sensor
data are favored; particles remain close to where the robot was
last able to localize. This does, in most cases, better represent
what has happened to the robot than distributing the particles
uniformly over the entire field.

C. Localization Experiment

The following experiment is a localization task using the
real robot. The robot is placed on the field at the location
indicated in fig. 4, facing outwards. The robot performs a
scanning motion with its head (pan range [—45°,45°]) but
does not move otherwise. From its position, it can only
see one landmark. A panorama composed of actual robot
camera images is shown in fig. 5. The a priori belief is
assumed uniform. This position was chosen because it is a

Fig. 4.  Experimental setup: Robot is standing at the position shown in the
photo. It performs a scanning motion with its camera.

Fig. 5. A panorama view generated from actual camera images, single camera
image highlighted. The robot can only see one landmark.

particulary difficult spot for the robot to localize given the
limited sensor information. Two quantities can be used when
a landmark is seen: its size in the camera image can be used
to estimate the distance to the landmark d; and the relative
angle to the landmark (bearing, «;) can be calculated from its
position within the image. In practice we only use the bearing
because the distance measurement is error prone. Using just
the bearing, only the orientation of the robot can be inferred.
Note that this differs from triangulation where distances are
used.

In the following paragraphs, the basic localization not using
negative information and localization incorporating negative
information are compared. We first qualitatively analyze the
particle distribution and then show how the entropy of the dis-
tribution decreases when negative information is considered.

1) Particle Distribution: The basic experiment was con-
ducted using 100 particles for Monte Carlo localization. It
was repeated on a log file containing camera images, robot
joint angles, and odometry data using an increased particle
count of 2000 to get a better representation of the probability
distribution.

Not using negative information. Without using negative
information, the robot is unable to localize (fig. 6). Only
the orientation of the particles is adjusted according to the
sensor readings. The apparent clustering in the small sample
set in fig. 6 is not stable and, even after considerable time,
the particles do not converge. The distribution for the larger
sample set is uniform (w.r.t. position).

Note that the distribution is not circular because the distance
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Fig. 6. Particle distribution not using negative information, initial uniform
distribution and distribution after 10s. Solid arrows indicate Monte Carlo
particles (100). The experiment was repeated using 2000 particles (shaded
lines) to better represent the actual probability distribution. The actual robot
position is indicated by the white symbol, the estimated robot pose by the
solid symbol. Not using negative information and only using the bearing to
the landmark, the robot is unable to localize. Some clusters of particles form
but they do not converge. As one would expect, the position distribution is
almost uniform but the relative angle is quite distinct.

to the landmark was not used. Instead, only the bearing to
the landmark was used. This results in a radial distribution
resembling magnetic field lines.

Incorporating negative information. The negative informa-
tion gained in this experiment is not seeing but one landmark
within the pan range (pardon the double negation). Incorporat-
ing this information, the robot is able to localize quickly. On
average, the robot is reasonably well localized after about 10
secs with a pose error of less than Ap = (25 cm, 25 cm, 20°).

2) Entropy: We use the expected entropy H as an infor-
mation theoretical quality measure of the position estimate
Bel(st) [2]:

Hy(s;) = — > _ Bel(s) log(Bel(sy))

St

The sum runs over all possible states. The entropy of the
particle distribution becomes zero if the robot is perfectly
localized in one position, maximal values of H mean that
Bel(st) is uniformly distributed.

Fig. 8 shows the progression of the distribution’s entropy
over time for the above localization experiment calculated
from the 100 particle distribution.

Not using negative information. The experiments starts with
a uniform particle distribution which equals to maximum
entropy. When the landmark comes into view, a decrease in
entropy is observed. This information gain is due to the robot
being able to now infer its relative orientation w.r.t. the land-
mark. Since there are no constraints on the robot’s position,
the entropy remains at a relatively high level. This is easily
seen by separately calculating the entropy of the angle and
position distributions. Note that even though there is a drop
in entropy, the pose estimate itself is still highly uncertain.
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Fig. 7. Particle distribution when negative information is incorporated, initial
uniform distribution and distribution after 10s. When incorporating negative
information, the robot is able to localize quickly.

Incorporating negative information. When using negative
information, the entropy decreases even before the first sensor
reading. The information gain is much smaller than that caused
by perceiving a landmark but nevertheless noticeable. As soon
as there is a percept, the negative information in combination
with the knowledge of the robot’s orientation results in a quick
convergence towards the actual robot pose. This is remarkable
since without using negative information, localization was not
possible.

Using field lines for localization. The previous experiment
was repeated using field lines for localization in addition
to landmarks. This enables the robot to localize quickly at
the actual robot pose even when using the basic localization
(fig. 8, right). Adding negative information, however, greatly
increases the rate of convergence and the overall level of
entropy is reduced even further. The decrease of entropy when
incorporating negative information is not obscured by the
usage of lines for localization although field lines offers a
much greater information content than negative information.

Kidnapped Robot. The kidnapped robot problem is a com-
monly used benchmark for the flexibility and robustness of
localization algorithms [3]: a localized robot is displaced and
the time for it to recover is measured. Our kidnapped robot
experiments underlined and confirmed the already stated find-
ings. The robot is able to recover from displacements without
using negative information as soon as it successively sees three
landmarks. In regions where this was not guaranteed, the case
is different. Whereas without using negative information, the
robot does not have enough evidence to update its belief,
incorporating negative information allows the robot to localize
quickly and reliably in such regions.

The ability to localize more quickly using negative infor-
mation is highly beneficial in real world applications where
the robot is trying to actually perform a task rather than
to localize perfectly. Such tasks often require the robot to
focus its attention on objects other than landmarks and the
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Fig. 8. Expected entropy of the belief in the localization task with (*) and

without (thin line) using negative information. 1) At first the robot does not see
the landmark. As soon as the landmark comes into the robot’s view (indicated
by the dashed vertical line), the entropy drops. Using negative information,
the quality of the localization is greatly improved and the entropy continues
to decrease over time. 2) Additionally using field lines for localization enables
the robot to localize even without negative information. Incorporating negative
information, however, yields a higher rate of convergence and the entropy is
significantly lowered.

sensing strategy may keep it from seeing as much of the
world as it potentially could. Integrating negative evidence
thus allows for more efficient sensing and improves overall
robot performance.

IV. CONCLUSION

We demonstrate the power of integrating negative informa-
tion — the absence of an expected sensor reading — into Markov
localization. Because sensors are more likely to overlook
observable landmarks than hallucinate ones that are not visible,
extra care has to be taken in designing the sensor model. To
avoid false negatives, the model needs to take into account the
sensor’s sensing range and possible occlusions of landmarks.
We present how such modeling can be achieved in general
and specifically for a Sony Aibo robot in the RoboCup
environment. In real robot experiments, we show that using
negative information, a robot is able to localize in positions
where it otherwise would not have been able to localize.
The robot senses a single landmark, and with the additional
information of not seeing any other landmarks it can limit
the area of where it believes it could be. The entropy of the
distribution is greatly reduced when negative information is
incorporated and the rate of convergence towards the estimated
position is increased.

Future work will focus on how negative information can
be used for other types of landmarks (e.g. field lines) and
other sensors. Performance evaluation will be continued in
more complex situations and will probe the possibilities of
reducing the number of particles necessary for robust Monte
Carlo localization.
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