
UT Austin Villa 2003: A New RoboCup Four-Legged Team

Peter Stone, Kurt Dresner, Selim T. Erdo�gan, Peggy Fidelman,

Niholas K. Jong, Nate Kohl, Gregory Kuhlmann, Ellie Lin,

Mohan Sridharan, Daniel Stronger, Gurushyam Hariharan

Department of Computer Sienes

The University of Texas at Austin

1 University Station C0500

Austin, Texas 78712-1188

fpstone,kdresner,selim,peggy,nkj,nate,kuhlmann,

ellie,smohan,stronger,thegurug�s.utexas.edu

http://www.s.utexas.edu/~AustinVilla

Tehnial Report UT-AI-TR-03-304

Otober 6, 2003

Abstrat

The UT Austin Villa RoboCup 2003 Four-Legged Team was a new entry in the ongoing series of

RoboCup legged league ompetitions. The team development began in mid-January of 2003, at whih

time none of the team members had any familiarity with the Aibos. Without using any RoboCup-related

ode from other teams, we entered a team in the Amerian Open ompetition at the end of April, and met

with some suess at the annual RoboCup ompetition that took plae in Padova, Italy at the beginning

of July. In this report, we desribe both our development proess and the tehnial details of its end

result, the UT Austin Villa team. The main ontributions of this paper are (i) a roadmap for new teams

entering the ompetition who are starting from srath, and (ii) full doumentation of the algorithms

behind our approah with the goal of making them fully repliable.

1

Contents

1 Introdution 5

2 The Class 5

3 Initial Behaviors 6

4 Vision 7

4.1 Camera Settings . 8

4.2 Color Segmentation . 9

4.3 Region Building and Merging . 11

4.4 Objet Reognition with Bounding Boxes . 13

4.5 Position and Bearing of Objets . 16

4.6 Visual Opponent Modeling . 16

5 Movement 17

5.1 Walking . 18

5.1.1 Basis . 18

5.1.2 Forward Kinematis . 18

5.1.3 Inverse Kinematis . 19

5.1.4 General Walking Struture . 22

5.1.5 Omnidiretional Control . 23

5.1.6 Tilting the Body Forward . 24

5.1.7 Desription of all the Parameters . 24

5.1.8 Tuning the Parameters . 25

5.1.9 Odometry Calibration . 26

5.2 General Movement . 27

5.2.1 Movement Module . 27

5.2.2 Movement Interfae . 29

5.2.3 High-Level Control . 30

6 Fall Detetion 31

7 Kiking 31

7.1 The Initial Kik . 31

7.2 A General Kik Framework . 32

7.2.1 Creating the Critial Ation . 32

7.2.2 Integrating the Critial Ation into the Walk . 33

7.3 Head Kik . 33

7.4 Chest Push Kik . 34

7.5 Arms Together Kik . 34

7.6 Fall Forward Kik . 34

7.7 Yoshi Kik . 36

8 Loalization 36

8.1 Basi Partile Filtering Approah . 36

8.2 Motion Update . 36

8.3 Observation Update . 37

8.3.1 Landmark Memory . 37

8.3.2 Removing Obsolete Observations . 38

8.3.3 Merging Past Observations . 38

8.3.4 Updating Probabilities . 38

2

8.3.5 Resampling . 39

8.3.6 Two Beaon Triangulation . 39

8.3.7 Three Beaon Triangulation . 40

8.3.8 Random Movement . 41

8.4 Pose Estimation . 42

9 Communiation 42

9.1 Initial Robot-to-Robot Communiation . 42

9.2 TCP Gateway . 43

9.3 Message Types . 43

9.4 Queuing Messages . 44

10 General Arhiteture 44

11 Global Map 45

11.1 Maintaining Loation Data . 45

11.2 Information from Teammates . 46

11.3 Providing a High Level Interfae . 46

12 Behaviors 47

12.1 Goal Soring . 47

12.1.1 Initial Solution . 48

12.1.2 Inorporating Loalization . 48

12.1.3 A Finite State Mahine . 50

12.2 Goalie . 51

12.2.1 Initial Solution . 51

12.2.2 Inorporating Loalization . 54

13 Coordination 55

13.1 Dibs . 55

13.1.1 Relevant Data . 55

13.1.2 Thrashing . 55

13.1.3 Stabilization . 55

13.1.4 Taking the Average . 56

13.1.5 Aging . 56

13.1.6 Calling the Ball . 56

13.1.7 Support Distane . 56

13.1.8 Phasing out Dibs . 57

13.2 Final Strategy . 57

13.2.1 Roles . 57

13.2.2 Supporter Behavior . 57

13.2.3 Defender Behavior . 58

13.2.4 Dynami Role Assignment . 58

14 UT Assist 60

14.1 General Arhiteture . 60

14.1.1 Typial Usage . 60

14.2 Debugging Data . 61

14.2.1 Visual Output . 61

14.2.2 Loalization Output . 61

14.2.3 Misellaneous Output . 62

14.3 Vision Calibration . 62

3

15 The Competitions 64

15.1 Amerian Open . 64

15.2 RoboCup 2003 . 66

15.3 The Challenge Events . 67

16 Conlusions and Future Work 68

A Heuristis for the Vision Module 69

A.1 Region Merging and Pruning Parameters . 69

A.2 Tilt Angle Test . 70

A.3 Cirle Method . 70

A.4 Beaon Parameters . 72

A.5 Goal Parameters . 73

A.6 Ball Parameters . 74

A.7 Opponent Detetion Parameters . 74

A.8 Opponent Blob Likelihood Calulation . 74

A.9 Coordinate Transforms . 75

4

1 Introdution

RoboCup, or the Robot Soer World Cup, is an international researh initiative designed to advane the

�elds of robotis and arti�ial intelligene by using the game of soer as a substrate hallenge domain. The

long-term goal of RoboCup is, by the year 2050, to build a full team of 11 humanoid robot soer players

that an beat the best human soer team on a real soer �eld [1℄.

RoboCup is organized into several di�erent leagues, inluding a omputer simulation league and two

leagues that use wheeled robots. This tehnial report onerns the development of a new team for the

Sony four-legged league

1

in whih all ompetitors use idential Sony Aibo ERS-210A robots and the Open-R

software development kit.

2

Sine all teams use idential robots, the four-legged league amounts to essentially a software ompetition.

In this report, we detail the development of a new team, alled UT Austin Villa,

3

from the Department of

Computer Sienes at the University of Texas at Austin.

For the purposes of this report, we assume familiarity with the spei�ations of the robots as well as the

rules of the RoboCup games. For full details see the legged league and Open-R sites footnoted above. Here

we desribe both our development proess and the tehnial details of its end result, the UT Austin Villa

team. The main ontributions of this report are

1. A roadmap for new teams entering the ompetition who are starting from srath; and

2. Full doumentation of the algorithms behind our approah with the goal of making them fully repliable.

Our team development began in mid-January of 2003, at whih time none of the team members had

any familiarity with the Aibos. Without using any RoboCup-related ode from any other teams, we entered

a team in the Amerian Open ompetition at the end of April, and met with some suess at the annual

RoboCup ompetition that took plae in Padova, Italy at the beginning of July. Although our team was not

one of the top few at the ompetition, we view it as a great aomplishment that we were able to develop

a ompetitive team in suh a short time. A primary goal of this report is to doument our development

proess as a guide for new teams in the future.

Our e�ort began as a graduate researh seminar o�ered as a lass during the Spring semester of 2003.

The following setion outlines the struture of the lass. At the end of that setion we outline the struture

of the remainder of the paper.

2 The Class

The UT Austin Villa 2003 legged robot team began as a foused lass e�ort during the Spring semester of

2003 at the University of Texas at Austin. Nineteen graduate students and one undergraduate were enrolled

in the ourse CS395T: Multi-Robot Systems: Roboti Soer with Legged Robots.

4

All of the authors on this

paper partiipated in the lass.

Students in the lass studied past approahes, both as desribed in the literature and as reeted in

publily available soure ode. However, we developed the entire ode base from srath with the goals of

learning about all aspets of robot ontrol and of introduing a ompletely new ode base to the ommunity.

Class sessions were devoted to students eduating eah other about their �ndings and progress, as well

as oordinating the integration of everybody's ode. Just nine weeks after their initial introdution to the

robots, the students already had preliminary working solutions to vision, loalization, fast walking, kiking,

and ommuniation.

The onrete goal of the ourse was to have a ompletely new working solution by the end of April so

that we ould partiipate in the Amerian Open ompetition, whih happened to fall during the last week

of the lass. After that point, a subset of the students ontinued working towards RoboCup 2003 in Padova.

1

http://www.openr.org/roboup/index.html

2

http://openr.aibo.om/

3

http://www.s.utexas.edu/~AustinVilla

4

http://www.s.utexas.edu/~pstone/Courses/395Tspring03

5

The lass was organized into three phases. Initially, the students reated simple behaviors with the sole

aim of beoming familiar with Open-R.

Then, about two weeks into the lass we shifted to phase two by identifying key subtasks that were

important for reating a omplete team. Those subtasks were:

� Vision;

� Movement;

� Fall Detetion;

� Kiking;

� Loalization;

� Communiation;

� General Arhiteture; and

� Coordination.

During this phase, students hose one or more of these subtasks and worked in subgroups on generating

initial solutions to these tasks in isolation.

By about the middle of Marh, we were ready to swith to phase three, during whih we emphasized

\losing the loop," or reating a single uni�ed ode-base that was apable of playing a full game of soer.

We ompleted this integration proess in time to enter a team in the RoboCup Amerian Open ompetition

at the end of April.

The following setions hronile our progress towards our RoboCup 2003 entry. All of the subtopis

addressed in phase two of the lass ontinued to be improved throughout our development proess. For

larity of presentation, we present our eventual solutions in the same setions in whih we introdue our

initial approahes. In so doing, we make an e�ort to doument the evolution of ideas that led to our �nal

solutions, though in general we give full details only for our �nal solutions. Subsequent setions address our

�nal integration e�orts as well as our experienes at the ompetition.

The remainder of the report is organized as follows. In Setion 3 we doument some of the initial

behaviors that were generated during phase one of the lass. Next we doument the output of some of

the subgroups that were formed in phase two of the lass: vision in Setion 4; movement in Setion 5; fall

detetion in Setion 6; kiking in Setion 7; loalization in Setion 8; and ommuniation in Setion 9. In

eah of these setions we fully doument our solutions to the subtasks as of RoboCup 2003 in July. Next, we

doument the tasks that oupied phase three of the lass, namely those that allowed us to put together the

above modules into a ohesive ode base. In Setion 10 we desribe our general arhiteture that ombines

sensing, deision-making, and ating. In Setion 11 we introdue global maps, our main state representation.

Setion 12 desribes our soer-playing behaviors suh as goal-soring and goaltending. Then in Setion 13

we doument our methods for oordinating the behaviors of the robots as a team. Setion 14 introdues our

debugging and development tool. Then in Setion 15 we summarize our experienes at the Amerian Open

and RoboCup 2003 ompetitions, and Setion 16 onludes.

3 Initial Behaviors

The �rst task for the students in the lass was to learn enough about the Aibo to be able to ompile and

run any simple program on the Aibo.

The open soure release of Open-R ame with several sample programs that ould be ompiled and loaded

onto the Aibo right away. These programs ould do simple tasks suh as:

L-Master-R-Slave: Cause the right legs to mirror manual movements of the left legs.

Ball-Traking-Head: Cause the head to turn suh that the pink ball is always in the enter of the visual

image (if possible).

PIDontrol: Move a joint to a position spei�ed by the user by typing in a telnet window.

6

The students were to pik any program and modify it, or ombine two programs in any way. The main

objetive was to make sure that everyone was familiar with the proess for ompiling and running programs

on the Aibos. Some of the resulting programs inluded:

� Variations on L-Master-R-Slave in whih di�erent joints were used to ontrol eah other. For example,

one student used the tail as the master to ontrol all 4 legs, whih resulted in a swimming type motion.

Doing so required saling the range of the tail joints to those of the leg joints appropriately.

� Variations on Ball-Traking-Head in whih a di�erent olor was traked. Two students teamed up to

ause the robot to play di�erent sounds when it found or lost the ball.

� Variations on PIDontrol suh that more than one joint ould be ontrolled by the same input string.

After beoming familiar with the ompiling and uploading proess, the next task for the students was to

beome more familiar with the Aibo's operating system and the Open-R interfae. To that end, they were

required to reate a program that added at least one new subjet-observer onnetion to the ode.

5

The

students were enouraged to reate a new Open-R objet from srath. Pattern-mathing from the sample

ode was enouraged, but reating an objet as di�erent as possible from the sample ode was preferred.

Some of the responses to this assignment inluded:

� The ability to turn on and o� LEDs by pressing one of the robots' sensors.

� A primitive walking program that walks forward when it sees the ball.

� A program that alternates blinking the LEDs and apping the ears.

After this assignment, whih was due after just the seond week of the lass, the students were familiar

enough with the robots and the oding environment to move on to their more direted tasks with the aim

of reating useful funtionality.

4 Vision

The ability of the robot to sense its environment is a prerequisite for any deision making on the Aibo. As

suh, we plaed a strong emphasis on the vision omponent of our team. The vision module proesses the

images taken by the CMOS amera loated on the Aibo. The module identi�es olors in order to reognize

objets, whih are then used to loalize the robot and to plan its operation.

Our visual proessing is done using the established proedure of olor segmentation followed by objet

reognition. Color segmentation is the proess of lassifying eah pixel in an input image as belonging to

one of a number of prede�ned olor lasses based on the knowledge of the ground truth on a few training

images. Though the fundamental methods employed in this module have been applied previously (both in

RoboCup and in other domains), it has been built from srath like all the other modules in our team.

Hene, the implementation details provided are our own solutions to the problems we faed along the way.

We have drawn some of the ideas from the previous tehnial reports of CMU [2℄ and UNSW [4℄. This

module an be broadly divided into two stages: (i) low-level vision, where the olor segmentation and region

building operations are performed, and (ii) high-level vision, wherein objet reognition is aomplished and

the position and bearing of the various objets in the visual �eld are determined. The following setions

present detailed desriptions of these proesses. But �rst, we present a brief overview of the robot's CMOS

olor amera.

5

A subjet-observer onnetion is a pipe by whih di�erent Open-R objets an ommuniate and be made interdependent.

For example, one Open-R objet ould send a message to a seond objet whenever the bak sensor is pressed, ausing the

seond objet to, for example, suspend its urrent task or hange to a new mode of operation.

7

4.1 Camera Settings

As mentioned previously, the robot omes equipped with a CMOS olor amera that operates at a frame

rate of 25fps. Some of its other preset features are:

� Horizontal viewing angle: 57:6

Æ

.

� Vertial viewing angle: 47:8

Æ

.

� Lens Aperture: 2.0.

� Foal length: 2.18mm.

We have partial ontrol over three parameters, eah of whih has three options from whih to hoose:

� WhiteBalane : We are provided with settings orresponding to three di�erent light temperatures.

1. Indoor �mode: 2800K.

2. FL�mode: 4300K.

3. Outdoor �mode: 7000K.

This setting, as the name suggests, is basially a olor orretion system to aomodate varying lighting

onditions. The idea is that the amera needs to identify the 'white point' (suh that white objets

appear white) so that the other olors are mapped properly. We found that this setting does help in

inreasing the separation between olors and hene helps in better objet reognition. The optimum

setting depends on the 'light temperature' registered on the �eld (this in turn depends on the type of

light used, i.e, inandesent, uoresent, et.). For example, in our lab setting, we notied a better

separation between orange and yellow with the Indoor setting than with the other settings. This helped

us in distinguishing the orange ball from the other yellow objets on the �eld suh as the goal and

setions of the beaons.

� ShutterSpeed :

1. Slow: 1=50se.

2. Mid: 1=100se .

3. Fast: 1=200se.

This setting denotes the time for whih the shutter of the amera allows light to enter the amera.

The higher settings (larger denominators) are better when we want to freeze the ation in an image.

We notied that both the 'Mid' and the 'Fast' settings did reasonably well though the 'Fast' setting

seemed the best, espeially onsidering that we want to apture the motion of the ball. Here, the lower

settings would result in blurred images.

� Gain:

1. Low: 0dB.

2. Mid: 0dB .

3. High: 6dB.

This parameter sets the amera gain. In this ase, we did not notie any major di�erene in performane

among the three settings provided.

8

4.2 Color Segmentation

The image aptured by the robot's amera, in the YCbCr format, is a set of numbers, ranging from 0 to

255 along eah dimension, representing luminane (Y) and hrominane (Cb, Cr). To enable the robot to

extrat useful information from these images, the numbers have to be suitably mapped into an appropriate

olor spae. We retain the YCbCr format and \train" the robot, using a Nearest Neighbor (NNr) sheme

[8, 4℄, to reognize and distinguish between 10 di�erent olors, numbered as follows:

� 0 = pink,

� 1 = yellow,

� 2 = blue,

� 3 = orange,

� 4 = marker green,

� 5 = red,

� 6 = dark (robot) blue,

� 7 = white,

� 8 = �eld green,

� 9 = blak.

The motivation behind using the NNr approah is that the olors under onsideration overlap in the YCbCr

spae (some, suh as orange and yellow, do so by a signi�ant amount). Unlike other ommon methods that

try to divide the olor spae into uboidal regions (or a olletion of planes), the NNr sheme allows us to

learn a olor table where the individual blobs are de�ned more preisely.

The original olor spae has three dimensions, orresponding to the Y, Cb, and Cr hannels of the input

image. To build the olor table (used for lassi�ation of the subsequent images on the robot), we maintain

three di�erent types of olor ubes in the training phase: one Intermediate (IM) olor ube orresponding

to eah olor, a Nearest Neighbor ube, and a Master (M) ube (the names will make more sense after the

desription given below). To redue storage requirements, we operate at half the resolution, i.e. all the ubes

have their numerial values saled to range from 0 to 127 along eah dimension. The ells of the IM ubes

are all initialized to zero, while those of the NNr ube and the M ube are initialized to 9 (the olor blak,

also representing bakground).

Color segmentation begins by �rst training on a set of images using UT Assist, our Java-based inter-

fae/debugging tool (for more details see Setion 14). A robot is plaed at a few points on the �eld. Images

are aptured and then transmitted over the wireless network to a remote omputer running the Java-based

server appliation. The objets of interest (goals, beaons, robots, ball, et.) in the images are manually

\labeled" as belonging to one of the olor lasses previously de�ned, using the Image Segmenter (see Se-

tion 14 for some pitures showing the labeling proess). For eah pixel of the image that we label, the ell

determined by the orresponding YCbCr values (after transforming to half-resolution), in the orresponding

IM ube, is inremented by 3 and all ells a ertain Manhattan distane away (within 2 units) from this

ell are inremented by 1. For example, if we label a pixel on the ball orange in the image and this pixel

orresponds to a ell (115; 35; 60) based on the intensity values of that pixel in the image, then in the orange

IM ube this ell is inremented by 3 while the ells suh as (115; 36; 61) and (114; 34; 60) (among others)

whih are within a Manhattan distane of 2 units from this ell, in the orange IM ube alone, are inremented

by 1. For another example, see Figure 1.

The training proess is performed inrementally, so at any stage we an generate a single ube (the NNr

ube is used for this purpose) that an be used for segmenting the subsequent images. This helps us see how

\well-trained" the system is for eah of the olors and serves as a feedbak mehanism that lets us deide

whih olors need to be trained further. To generate the NNr ube, we traverse eah ell in the NNr ube

and ompare the values in the orresponding ell in eah of the IM ubes and assign to this ell the index of

the IM ube that has the maximum value in this ell, i.e., 8(p; q; r) 2 [0; 127℄,

NNrCube(y

p

; b

q

; r

r

) = arg max

i2[0;9℄

IM

i

(y

p

; b

q

; r

r

) (1)

9

Y

 Cb

 Cr

 0

 0 0 0

 0 0 0 0 0

 0 0

 0 0

 0 0

 0 0 0

 0 0

 0 0

 0

 0 0

 0 0

 0

 0 0

 0

 0

 0 0 0

 0 1

 3 1

 1

 0

 1

 1

 1

 1

 1 1

 1

 1 1

(a) (b) ()

Figure 1: An example of the development of the olor table, spei�ally the IM ube. Part(a) shows the

general oordinate frame for the olor ubes. Part(b) shows a planar subsetion of one of the IM ubes

before labeling. Part() depits the same subsetion after the labeling of a pixel that maps to the ell at the

enter of the subsetion. Here only one plane is shown - the same operation ours aross all planes passing

through the ell under onsideration suh that all ells a ertain Manhattan distane away from this ell are

inremented by 1.

When we use this olor ube to segment subsequent images, we use the NNr sheme. For eah pixel in the

test image, the YCbCr values (transformed to half-resolution) are used to index into this NNr ube. Then we

ompute the weighted average of the value of this ell and those ells that are a ertain Manhattan distane

(we use 2-3 units) around it to arrive at a value that is set as the \numerial olor" (i.e. the olor lass) of

this pixel in the test image. The weights are proportional to the Manhattan distane from the entral ell,

i.e., the greater this distane the smaller the signi�ane attahed to the value in the orresponding ell (see

Figure 2).

We do the training over several images (around 20-30) by plaing the robot at suitable points on the

�eld. The idea here is to train on images that apture the beaons, goals, ball and the robots from di�erent

distanes (and also di�erent angles for the ball) to aount for the variations in lighting along di�erent points

on the �eld. This is espeially important for the orange ball, whose olor ould vary from orange to yellow

to brownish-red depending on the amount of lighting available at that point. We also train with several

di�erent balls to aount for the fat that there is a marked variation in olor among di�erent balls. At

the end of the training proess, we have all the IM ubes with the orresponding ells suitably inremented.

The NNr operation is omputationally intensive to perform on the robot's proessor. To overome this, we

preompute the result of performing this operation (the Master ube is used for this) from the orresponding

ells in the NNr olor ube, i.e. we traverse eah ell of the M Cube and ompute the \Nearest Neighbor"

value from the orresponding ells in the NNr ube. In other words, 8(p; q; r) 2 [0; 127℄ with a prede�ned

Manhattan distane ManDist 2 [3; 7℄,

MCube(y

p

; b

q

; r

r

) = arg max

i2[0;9℄

Sore(i) (2)

where 8(k

1

; k

2

; k

3

) 2 [0; 127℄,

Sore(i) =

0

�

X

k

1

;k

2

;k

3

�

ManDist� (j k

1

� p j + j k

2

� q j + j k

3

� r j)

1

A

j

(j k

1

� p j + j k

2

� q j + j k

3

� r j) < ManDist

^ NNrCube(y

k

1

; b

k

2

; r

k

3

) = i: (3)

10

 1

 1

 1

 1

 1

 1

 1

 1 1

 1

 1 1

 3

 1

 9 9 3

 3 3 3

 3 3

 3 3

 3 9 3 9

 3

 3 3

 9 3 9

 3 3 3 3

 3 3 3 3 3

 3 3 3

 9 3 3 9

 (a) (b)

Figure 2: An example of the weighted average applied to the NNr ube (a 2-dimensional representative

example). Part (a) shows the values along a plane of the NNr ube before the NNr sheme is applied to the

entral ell. Part (b) shows the same plane after the NNr update for its entral ell. We are onsidering

ells within a Manhattan distane of 2 units along the plane. For this entral ell, olor label 1 gets a vote

of 3+1+1+1 = 6 while label 3 gets a vote of 2+2+2+2+1+1+1+1+1 = 13 whih makes the entral

ell's label = 3. This is the value that is set as the lassi�ation result. This is also the value that is stored

in the ell in the M ube that orresponds to the entral ell.

This ube is loaded onto the robot's memory stik. This then makes olor segmentation on the robot a

simple proess of table lookup, thereby making it a lot faster. (For an example of the olor segmentation

proess and the Master Cube generated at the end of it, see Figure 17).

One important point about our olor segmentation sheme is that we do not (at present) make an e�ort

to normalize the ubes based on the number of pixels (of eah olor) that we train on. So, if we labeled a

number of yellow pixels and a relatively smaller number of orange pixels, then we would be biased towards

yellow in the NNr ube. This is not a problem if we are areful during the training proess and label regions

suh that all olors get (roughly) equal representation. We leave a prinipled treatment of the problem of

normalization to future researh.

4.3 Region Building and Merging

The Master ube is loaded onto the robot's memory stik and this is used to segment the images that

the robot's amera aptures (in real-time). The next step in low-level proessing involves the formation of

retangular bounding boxes around onneted regions of the same olor. This in turn onsists of run-length

enoding (RLE) and region merging [7℄, whih are standard image proessing approahes used previously in

the RoboCup domain [2℄.

As eah image is segmented (during the �rst san of the image), left to right and top to bottom, it is

enoded in the form of run-lengths along eah horizontal san line i.e. along eah line we store the (x, y)

position (the root node) where a sequene of a partiular olor starts and the number of pixels until a sequene

of another olor begins. The data orresponding to eah run-length is stored in a separate data struture

(alled RunRegion) and the run-lengths are all stored as a linked list. Eah RunRegion data struture also

stores the orresponding olor. Further, there is a bounding box orresponding to eah RunRegion/run-

length, whih during the �rst pass is just the run-length itself, but has additional properties suh as the

number of run-lengths enlosed, the number of atual pixels enlosed, the upper left (UL) and lower right

(LR) orners of the box et. Eah run-length has a pointer to the next run-length of the same olor (null if

none exists) and an index orresponding to the bounding box that it belongs to, while eah bounding box has

11

a pointer to the list of run-lengths that it enloses. This failitates the easy merging of two run-lengths (or

a bounding box ontaining several run-lengths with a single run-length or two bounding boxes eah having

more that one run-length). The RunRegion data struture and the BoundingBox data struture are given

in Table 1.

// The Runregion data structure definition.

struct RunRegion {

};

// The BoundingBox data structure definition.

struct BoundingBox {

 int LRx;
 int LRy;
 bool lastBox;
 int valid;

 int rrcount;

 RunRegion* listRR;
 RunRegion* eoList;

};

 int color; //color associated with the run region.
 RunRegion* root; //the root node of the runregion.

 int xLoc; //x location of the root node.
 int yLoc; //y location of the root node.
 int runLength; // number of run lengths with this region.
 int boundingBox; //the bounding box that this region belongs to.

 RunRegion* nextRun;
 RunRegion* listNext; //pointer to the next runregion in the current run length.

 BoundingBox* prevBox; //pointer to the previous bounding box.
 BoundingBox* nextBox; // pointer to the next bounding box.
 int ULx; //upper left corner x coordinate.
 int ULy; //upper left corner y coordinate.

 int numRunLengths; //number of runlengths associated with this bounding box.
 int numPixels; //number of pixels in this bounding box.

 int color; //color cooresponding to this bounding box.

 float prob; //probability corresponding to this bounding box.

Table 1: This table shows the basi run region and bounding box data strutures with whih we operate.

Next, we need to merge the run-lengths/bounding boxes orresponding to the same objet together under

the assumption that an objet in the image will be represented by onneted run-lengths. In the seond pass,

we proeed along the run-lengths (in the order in whih they are present in the linked list) and hek for

pixels of the same olor immediately below eah pixel over whih the run-length extends, merging run-lengths

of the same olor that have signi�ant overlap (the threshold number of pixel overlap is deided based on

experimentation: see Appendix A.1). When two run-lengths are to be merged, one of the bounding boxes

is deleted while the other's properties (root node, number of run-lengths, size et) are suitably modi�ed

to inlude both the bounding boxes. This is aomplished by moving the orresponding pointers around

appropriately. By inorporating suitable heuristis, we remove bounding boxes that are not signi�antly

large or dense enough to represent an objet of interest in the image, and at the end of this pass, we end

up with a number of andidate bounding boxes, eah representing a blob of one of the nine olors under

onsideration. The bounding boxes orresponding to eah olor are linked together in a separate linked list,

whih (if required) is sorted in desending order of size for ease of further proessing. Details of the heuristis

used here an be found in Appendix A.1.

12

4.4 Objet Reognition with Bounding Boxes

One we have bounding boxes of the various olors arranged in separate lists, we an proeed to high-level

vision, i.e., the detetion of objets of interest in the robot's image frame. The objets that we primarily

need to identify in the visual �eld are the ball, the two goals, the �eld markers (other than the goals) and the

opponents. This stage takes as input the lists of bounding boxes and provides as output a olletion of objets

(strutures alled the VisionObjets), one for eah deteted objet, whih are then used for determining the

position and bearing of these objets with respet to the robot. This information is in turn used in the

loalization module (see Setion 8) to alulate the robot's position in the �eld oordinates. To identify

these objets we introdue some onstraints and heuristis, some of whih are based on the known geometry

of the environment while others are parameters that we identi�ed by experimentation. We �rst doument

the basi proess used to searh for the various objets, and at the end of the setion we provide a desription

of the onstraints and heuristis used.

We start with the goals beause they are generally the largest blobs of the orresponding olors and one

found they an be used to eliminate spurious blobs during beaon and ball detetion. We searh through the

lists of bounding boxes for olors orresponding to the goals (blue and yellow) on the �eld, given onstraints

on size, aspet ratio and density Furthermore, heks are inluded to ensure that spurious blobs (noisy

estimates on the �eld, blobs oating in the air, et.) are not taken into onsideration. On the basis of these

onstraints we ompare the blob found in the image (and identi�ed as a goal) with the known geometry of

the goal. This provides some sort of likelihood measure, and a VisionObjet is reated to store this and the

information of the orresponding bounding box. (Table 2 displays the data strutures used for this purpose)

struct VisionObjects{
 int NumberOfObjects; //number of vision obejcts in curretn frame.
 BBox* ObjectInfo; //array of objects in view.
}

struct BBox {

 Point ul; //upper left point of the bounding box.
 Point lr; //lower right point of the bounding box.

}

}
 double y; //y coordinate.
 double x; //x coordinate.
struct Point {

int ObjID; //object ID.

double prob; //likelihood corresponding to this bounding box/object.

Table 2: This table shows the basi VisionObjet and assoiated data strutures with whih we operate.

After searhing for the goals, we searh for the orange ball, probably the most important objet in

the �eld. We sort the orange bounding boxes in desending order of size and searh through the list (not

onsidering very small ones), one again based on heuristis on size, aspet ratio, density, et. To deal with

ases with partial olusions, whih is quite ommon with the ball on the �eld, we use the \irle method" to

estimate the equation of the irle that best desribes the ball (see Appendix A.3 for details). Basially this

involves �nding three points on the edge of the ball and �nding the equation of the irle passing through the

three points. This method seems to give us an aurate estimate of the ball size (and hene the ball distane)

in most ases. In the ase of the ball, in addition to the hek that helps eliminate spurious blobs (oating

in the air), heks have to be inorporated to ensure that minor mislassi�ation in the segmentation stage

(explained below) do not lead to detetion of the ball in plaes where it does not exist.

13

Next, we takle the problem of �nding the beaons (six �eld markers, exluding the goals). The identi�-

ation of beaons is important in that the auray of loalization of the robot depends on the determination

of the position and bearing of the beaons (with respet to the robots) whih in turn depends on the proper

determination of the bounding boxes assoiated with the beaons. Sine the olor pink appears in all bea-

ons, we use that as the fous of our searh. Using suitable heuristis to aount for size, aspet ratio,

density, et. we math eah pink blob with blue, green, or yellow blobs to determine the beaons. We ensure

that only one instane of eah beaon (the most likely one) is retained. Additional tests are inorporated

to remove spurious beaons: those that appear to be on the �eld or in the opponents, oating in the air,

inappropriately huge or tiny, et. For details, see Appendix A.4.

After this �rst pass, if the goals have not been found, we searh through the andidate blobs of the

appropriate olors with a set of redued onstraints to determine the ourrene of the goals (whih results

in a redued likelihood estimate as we will see below). This is useful when we need to identify the goals at

a distane, whih helps us loalize better, as eah edge of the goal serves as an additional marker for the

purpose of loalization.

We found that the goal edges were muh more reliable as inputs to the loalization module than were

the goal enters. So, one the goals are deteted, we determine the edges of the goal based on the edges of

the orresponding bounding boxes. Of ourse, we inlude proper bu�ers at the extremities of the image to

ensure that we detet the atual goal edges and not the 'arti�ial edges' generated when the robot is able to

see only a setion of the goal (as a result of its view angle) and the sides of the trunated goal's bounding

box are mistaken to be atual edges.

Next, we present a brief desription of some of the heuristis employed in the detetion of ball, goals,

beaons and opponents. We begin by listing the heuristis that are ommon to all objets and then also list

those that are spei� to goals, ball and/or beaons. For more detailed explanations on some methods and

parameters for individual test see the orresponding appendies.

� Spurious blob elimination: A simple alulation using the tilt angle of the robot's head is used to

determine and hene eliminate spurious (beaon, ball and/or goal) blobs that are too far down or too

high up in the image plane. See Appendix A.2 for the atual thresholds and alulations.

� Likelihood Calulation: For eah objet of interest in the robot's visual �eld, we assoiate a measure

whih desribes how sure we are of our estimation of the presene of that objet in the urrent image

frame. The easiest way to aomplish this would be to ompare the aspet ratio (the ratio of the height

to the width) of the bounding boxes that identify these objets, to the atual known aspet ratio of the

objets in the �eld. For example, the goal has an aspet ratio of 1 : 2 in the �eld, and we an ompare

the aspet ratio of the bounding box that has been deteted as the goal with this expeted ratio. We

an laim that the loser these two values are, the more sure we are of our estimate and hene higher

is the likelihood.

� Beaon spei� alulations:

1. To remove spurious beaons, we ensure that the two setions that form the beaon are of ompa-

rable size, i.e. that eah setion is at least half as large and half as dense as the other setion.

2. We ensure that the separation between the two setions is within a small threshold, whih is

usually 2� 3 pixels.

3. We ompare the aspet ratio of bounding box orresponding to the beaon in the image to the

atual aspet ratio (2 : 1 :: height : width), whih helps remove andidate beaons that are too

small or disproportionately large.

4. Aspet ratio, as mentioned above is further used to determine an estimate of the likelihood of eah

andidate beaon that also helps hoose the \most probable" andidate when there are multiple

ourrenes of the same beaon. Only beaons with a likelihood above a threshold are retained

and used for loalization alulations. This helps ensure that false positives, generated by lighting

variations and/or shadows, do not ause major problems in loalization.

14

Note: for sample threshold values, see Appendix A.4.

� Goal spei� alulations:

1. We use the `tilt-angle test' (desribed in detail in Appendix A.2)

2. We use a similar aspet ratio test for the goals, too. In the ase of the goals we also look for

suÆiently high density (the ratio of the number of pixels of the expeted olor to the area of the

blob), the number of run-lengths enlosed, and a minimum number of pixels. All these thresholds

were determined experimentally, and hanging these thresholds hanges the distane from whih

the goal an be deteted and the auray of detetion. For example, lowering these thresholds

an lead to false positives.

3. The aspet ratio is used to determine the likelihood, and the andidate is aepted i� it has a

likelihood measure above a prede�ned minimum.

4. When doing a seond pass for the goal searh, we relax the onstraints slightly but proportionately

a lower likelihood measure gets assigned to the goal, if deteted.

Note: for sample threshold values, see Appendix A.5.

� Ball spei� alulations:

1. We use the `tilt-angle test' to eliminate spurious blobs from onsideration.

2. In most ases, the ball is severely oluded, preluding the use of the aspet ratio test. Nonetheless,

we �rst searh for an orange objet with a high density and an aspet ratio (1:1) that would detet

the ball if it is seen ompletely and not oluded.

3. If the ball is not found with these tight onstraints, we relax the aspet ratio onstraint and

inlude additional heuristis (e.g. if the ball is lose, even if it is partially oluded, it should have

a large number of run-lengths and pixels) that help detet a bounding box around the partially

oluded ball. These heuristis and assoiated thresholds were determined experimentally.

4. If the yellow goal is found, we ensure that the andidate orange ball does not our within it and

above the ground (whih an happen sine yellow and orange are lose in olor spae).

5. We hek to make sure that the orange ball is found lower than the lower-most beaon in the

urrent frame. Also, the ball annot our above the ground, or within or slightly below the

beaon. The latter an our if the white and/or yellow portions of the beaon are mislassi�ed

as orange.

6. We use the \irle method" to detet the atual ball size. But we also inlude heks to ensure

that in ases where this method fails and we end up with disproportionately huge or very small

ball estimates (thresholds determined experimentally), we either keep the estimates we had before

employing the irle method (and extend the bounding box along the shorter side to form a square

to get the losest approximation to the ball) or rejet the ball estimate in the urrent frame. The

hoie depends on the extent to whih the estimated \ball" satis�es experimental thresholds.

Note: for sample threshold values, see Appendix A.6.

Finally, we hek for opponents in the urrent image frame. As in the previous ases, suitable heuristis

are employed both to weed out the spurious ases and to determine the likelihood of the estimate. To

identify the opponents, we �rst sort the blobs of the orresponding olor in desending order of size, with a

minimum threshold on number of pixels and run-lengths. We inlude a relaxed version of the aspet ratio

test and strit tilt angle tests (an \opponent" blob annot our muh lower or muh higher than the horizon

when the robot's head has very little tilt and roll) to further remove spurious blobs (see Appendix A.2 and

Appendix A.7). Eah time an opponent blob (that satis�es these thresholds) is deteted, the robot tries to

merge it with one of its previous estimates based on thresholds. If it does not sueed and it has less than

15

4 valid (previous) estimates it adds this estimate to the list of opponents. At the end of this proess, eah

robot has a list that stores the four largest bounding boxes (that satisfy all these tests) of the olor of the

opponent with suitable likelihood estimates that are determined based on the size of the bounding boxes

(see Appendix A.8). Further proessing of opponent estimates using the estimates from other teammates

et is desribed in detail in the setion on visual opponent modeling (Setion 4.6). One proessing of the

urrent visual frame is ompleted, the deteted objets, eah stored as a VisionObjet is passed through the

Brain to the GlobalMap module wherein the VisionObjets are operated upon using Loalization routines.

4.5 Position and Bearing of Objets

The objet reognition module returns a set of data strutures, one for eah \legal" objet in the visual

frame. Eah objet also has an estimate of its likelihood, whih represents the unertainty in our pereption

of the objet. The next step (the �nal step in high-level vision) is to determine the distane to eah suh

objet from the robot and the bearing of the objet with respet to the robot. In our implementation,

this estimation of distane and bearing of all objets in the image, with respet to the robot, is done as

a preproessing step when the loalization module kiks into ation during the development of the global

maps. Sine this is basially a vision-based proess we desribe it here rather than in the setion (Setion 8)

on loalization. As eah frame of visual input is proessed, the robot has aess to the tilt, pan, and roll

angles of its amera from the appropriate sensors and these values give us a simple transform that takes us

from the 3D world to the 2D image frame. Using the known projetion of the objet in the image plane and

the geometry of the environment (the expeted sizes of the objets in the robot's environment) we an arrive

at estimates for the distane and bearing of the objet relative to the robot. The known geometry is used to

arrive at an estimate for the varianes orresponding to the distane and the bearing. Suppose the distane

and angle estimates for a beaon are d and �. Then the varianes in the distane and bearing estimates are

estimated as:

variane

d

=

�

1

b

p

�

� (0:1d) (4)

where

�

1

b

p

�

is the likelihood of the objet returned by vision.

variane

�

= tan

�1

�

beaon

r

d

�

(5)

where beaon

r

is the atual radius of the beaon in the environment.

By similar alulations, we an determine the distane and bearing (and the orresponding varianes) of

the various objets in the robot's �eld of view.

4.6 Visual Opponent Modeling

Another important task aomplished using the image data is that of opponent modeling. As desribed

in Setion 4.4, eah robot provides a maximum of four best estimates of the opponent blobs based on the

urrent image frame. To arrive at an eÆient estimate of the opponents (loation of the opponents relative

to the robot and hene with respet to the global frame), eah robot needs to merge its own estimates with

those ommuniated by its teammates. As suh this proess is aomplished during the development of the

global maps (Setion 11) but sine the operation interfaes diretly with the output from the vision module,

it is desribed here.

When opponent blobs are identi�ed in the image frame, the vision module returns the bounding boxes

orresponding to these blobs. We notied that though the shape of the blob and hene the size of the

bounding box an vary depending on the angle at whih the opponent robot is viewed (and its relative

orientation), the height of the bounding box is mostly within a ertain range. We use this information to

arrive at an estimate of the distane of the opponent and use the entroid of the bounding box to estimate

the bearing of the andidate opponent with respet to the robot (see Setion 4.5 for details on estimation of

16

distane and bearing of objets). These values are used to �nd the opponent's (x, y) position relative to the

robot and hene determine the opponent's global (x, y) position (see Appendix A.9 for details on transforms

from loal to global oordinates and vie versa). Variane estimates for both the x and the y positions are

obtained based on the alulated distane and the likelihood assoiated with that partiular opponent blob.

For example, let d and � be the distane and bearing of the opponent relative to the robot. Then, in the

robot's loal oordinate frame (determined by the robot's position and orientation), we have the relative

positions as:

rel

x

= d � os(�); rel

y

= d � sin(�)

From these we obtain the global positions as:

�

glob

x

glob

y

�

= T

global

loal

�

�

rel

x

rel

y

�

(6)

where T

global

loal

is the 2D-transformation matrix from loal to global oordinates.

For the varianes in the positions, we use a simple approah:

var

x

= var

y

=

1

Opp

prob

� (0:1d) (7)

where the likelihood of the opponent blob, Opp

prob

is determined by heuristis (see Appendix A.8).

If we do not have any previous estimates of opponents from this or any previous frame, we aept

this estimate and store it in the list of known opponent positions. If any previous estimates exist, we try

to merge them with the present estimate by heking if they are lose enough (based on heuristis). All

merging is performed assuming Gaussian distributions. The basi idea is to onsider the x and y position as

independent Gaussians (with the positions as the means and the assoiated varianes) and merge them (for

more details see Setion 8.3.3 and [10℄). If merging is not possible and we have fewer than four opponent

estimates, we treat this as a new opponent estimate and store it as suh in the opponents list. But if four

opponent estimates already exist, we try to replae one of the previous estimates (the one with the maximum

variane in the list of opponent estimates and with a variane higher than the new estimate) with the new

estimate. One we have traversed through the entire list of opponent bounding boxes presented by the vision

module, we go through our urrent list of opponent estimates and degrade all those estimates that were not

updated, i.e. not involved in merging with any of the estimates from the urrent frame (for more details on

the degradation of estimates, see the initial portions of Setion 11 on global maps). When eah robot shares

its Global Map (see Setion 11) with its teammates, this data gets ommuniated.

When the robot reeives data from its teammates, a similar proess is inorporated. The robot takes

eah urrent estimate (i.e. one that was updated in the urrent yle) that is ommuniated by a teammate

and tries to merge it with one of its own estimates. If it fails to do so and it has fewer than four opponent

estimates, it aepts the ommuniated estimate as suh and adds it to its own list of opponent estimates.

But if it already has four opponent estimates, it replaes its oldest estimate (the one with the largest variane

whih is larger than the variane of the ommuniated estimate too) with the ommuniated estimate. If

this is not possible, the ommuniated estimate is ignored.

This proedure, though simple, gives reliable results in nearly all situations one the degradation and

merging thresholds are properly tuned. It was used both during games and in one of the hallenge tasks (see

Setion 15.3) during RoboCup and the performane was good enough to walk from one goal to the other

avoiding all seven robots plaed in its path.

5 Movement

Enabling the Aibos to move preisely and quikly is equally as essential to the overall RoboCup task as

the vision task. In this setion, we introdue our approah to Aibo movement, inluding walking and the

interfaes from walking to the higher level ontrol modules.

17

The Aibo omes with a stable but slow walk. From wathing the videos of past RoboCups, and from

reading the available tehnial reports, it beame lear that a fast walk is an essential part of any RoboCup

team. The walk is perhaps the most feasible omponent to borrow from another team's ode base, sine it

an be separated out into its own module. Nonetheless, we deided to reate our own walk in the hopes

of ending up with something at least as good, if not better, than that of other teams, while retaining the

ability to �ne tune it on our own.

The movement omponent of our team an be separated into two parts. First, the walking motion itself,

and seond, an interfae module between the low level ontrol of the joints (inluding both walking and

kiking) and the deision-making omponents.

5.1 Walking

This setion details our approah to enabling the Aibos to walk.

5.1.1 Basis

At the lowest level, walking is e�eted on the Aibo by ontrolling the joint angles of the legs. Eah of the four

legs has three joints known as the rotator, abdutor, and knee. The rotator is a shoulder joint that rotates

the entire leg (inluding the other two joints) around an axis that runs horizontally from left to right. The

abdutor is the shoulder joint responsible for rotating the leg out from the body. Finally, the knee allows the

lower link of the leg to bend forwards or bakwards, although the knees on the front legs primarily bend the

feet forwards while the ones on the bak legs bend primarily bakwards. These rotations will be desribed

more preisely in the setion on forward kinematis.

Eah joint is ontrolled by a PID mehanism. This mehanism takes as its inputs P, I, and D gain settings

for that joint and a desired angle for it. An online tutorial about PID ontrol an be found at [11℄. The robot

arhiteture an proess a request for eah of the joints at a rate of at most one every eight milliseonds. We

have always requested joint values at this maximum allowed frequeny. Also, the Aibo model information

lists reommended settings for the P, I, and D gains for eah joint. We have not thoroughly experimented

with any settings aside from the reommended ones and use only the reommended ones for everything that

is reported here.

The problem of ompelling the robot to walk is greatly simpli�ed by a tehnique alled inverse kinematis.

This tehnique allows the trajetory of a leg to be spei�ed in terms of a three-dimensional trajetory for the

foot. The inverse kinematis onverts the loation of the foot into the orresponding settings for the three

joint angles. A preursor to deriving inverse kinematis formulas is having a model of the forward kinematis,

the funtion that takes the three joint angles to a three-dimensional foot position. This is e�etively our

mathematial model of the leg.

5.1.2 Forward Kinematis

For eah leg, we de�ne a three-dimensional oordinate system whose origin is that leg's shoulder. In these

oordinate systems, positive x is to the robot's right, positive y is the forward diretion, and positive z is

up. Thus, when a positive angle is requested from a ertain type of joint, the diretion of the resulting

rotation may vary from leg to leg. For example, a positive angle for the abdutor of a right leg rotates the

leg out from the body to the right, while a positive angle for a left leg rotates the leg out to the left. We

will desribe the forward and inverse kinematis for the front right leg, but beause of the symmetry of the

Aibo, the inverse kinematis formulas for the other legs an be attained simply by �rst negating x or y as

neessary.

The unit of distane in our oordinate system is the length of one link of any leg, i.e. from the shoulder to

the knee, or from the knee to the foot. This may seem a strange statement, given that, physially speaking,

the di�erent links of the robot's legs are not exatly the same length. However, in our mathematial model of

the robot, the links are all the same length. This serves to simplify our alulations, although it is admittedly

an inauray in our model. We argue that this inauray is overshadowed by the fat that we are not

18

modeling the leg's foot, a umbersome unatuated aestheti appendage. As far as we know, no team has yet

tried to model the foot.

We all the rotator, abdutor, and knee angles J

1

, J

2

, and J

3

respetively. The goal of the forward

kinematis is to de�ne the funtion from J = (J

1

; J

2

; J

3

) to p = (x; y; z), where p is the loation of the

foot aording to our model. We all this funtion K

F

(J). We start with the fat that when J = (0; 0; 0)

K

F

(J) = (0; 0;�2), whih we all p

0

. This orresponds to the situation where the leg is extended straight

down. In this base position for the leg, the knee is at the point (0; 0;�1). We will desribe the �nal loation

of the foot as the result of a series of three rotations being applied to this base position, one for eah joint.

First, we assoiate eah joint with the rotation it performs when the leg is in the base position. The

rotation assoiated with the knee, K(q;�), where q is any point in spae, is a rotation around the line y = 0,

z = �1, ounterlokwise through an angle of � with the x-axis pointing towards you. The abdutor's

rotation, A(q;�), goes lokwise around the y-axis. Finally, the rotator is R(q;�), and it rotates ounter-

lokwise around the x-axis. In general (i.e. when J

1

and J2 are not 0), hanges in J

2

or J

3

do not a�et

p by performing the orresponding rotation A or K on it. However, these rotations are very useful beause

the forward kinematis funtion an be de�ned as

K

F

(J) = R(A(K(p

0

; J

3

); J

2

); J

1

): (8)

This formulation is based on the idea that for any set of angles J , the foot an be moved from p

0

to its

�nal position by rotating the knee, abdutor, and rotator by J

3

, J

2

, and J

1

respetively, in that order. This

formulation works beause when the rotations are done in that order they are always the rotations K, A,

and R. A shemati diagram of the Aibo after eah of the �rst two rotations is shown in Figure 3.

It is never neessary for the robot to alulate x, y, and z from the joint angles, so the above equation

need not be implemented on the Aibo. However, it is the starting point for the derivation of the Inverse

Kinematis, whih are onstantly being omputed while the Aibo is walking.

5.1.3 Inverse Kinematis

Inverse kinematis is the problem of �nding the inverse of the forward kinematis funtion K

F

, K

I

(q). With

our model of the leg as desribed above, the derivation of K

I

an be done by a relatively simple ombination

of geometri analysis and variable elimination.

The angle J

3

an be determined as follows. First we alulate d, the distane from the shoulder to the

foot, whih is given by

d =

p

x

2

+ y

2

+ z

2

: (9)

Next, note that the shoulder, knee, and foot are the verties of an isoseles triangle with sides of length

1, 1, and d with entral angle 180� J3. This yields the formula

J

3

= 2 os

�1

�

d

2

�

: (10)

The inverse osine here may have two possible values within the range for J

3

. In this ase we always

hoose the positive one. While there are some points in three-dimensional spae that this exludes (beause

of the joint ranges for the other joints), those points are not needed for walking. Furthermore, if we allowed

J

3

to sometimes be negative, it would be very diÆult for our funtion K

I

to be ontinuous over its entire

domain.

To ompute J

2

, we must �rst write out an expression for K(p

0

; J

3

). It is (0; sinJ

3

; 1+osJ

3

). This is the

position of the foot in Figure 3a. Then we an isolate the e�et of J

2

as follows. Sine the rotation R is with

respet to the x-axis, it does not a�et the x-oordinate. Thus we an make use of the fat that the K

F

(J),

whih is de�ned to be R(A(K(p

0

; J

3

); J

2

); J

1

) (Equation 8), has the same x-oordinate as A(K(p

0

; J

3

); J

2

).

Plugging in our expression for K(p

0

; J

3

), we get that

A(K(p

0

; J

3

); J

2

) = A((0; sinJ

3

; 1 + osJ

3

); J

2

): (11)

19

+z

+y

−z −z

p0

J3 J3p0K(,)

J2

0 J3p J2A(K(,),)

(0,0,−1)

(0,0,−2)

+z

+x

b)a)

Figure 3: Shemati drawings of the Aibo aording to our kinematis model. a) This is a side view of

the Aibo after rotation K has been performed on the foot. b) In this front view, rotation A has also been

performed.

20

Sine A is a rotation around the y-axis,

A(K(p

0

; J

3

); J

2

) = (sinJ

2

(1 + osJ

3

); sinJ

3

; osJ

2

(1 + osJ

3

)): (12)

Setting x (whih is de�ned to be the x-oordinate of K

F

(J)) equal to the x-oordinate here and solving

for J

2

gives us

J

2

= sin

�1

�

x

1 + osJ

3

�

: (13)

Note that this is only possible if x � 1 + os(J

3

). Otherwise, there is no J

2

that satis�es our onstraint

for it, and, in turn, no J suh that F

K

(J) = q. This is the impossible sphere problem, whih we disuss in

more detail below. The position of the foot after rotations K and A is depited in Figure 3b.

Finally, we an alulate J

1

. Sine we know y and z before and after the rotation R, we an use the

di�erene between the angles in the y-z plane of the two (y; z)'s. The C++ funtion atan2(z; y) gives us the

angle of the point (y; z), so we an ompute

J

1

= atan2(z; y)� atan2(osJ

2

(1 + osJ

3

); sinJ

3

): (14)

The result of this subtration is normalized to be within the range for J

1

. This onludes the derivation

of J

1

through J

3

from x, y, and z. The omputation itself onsists simply of the alulations in the four

equations (9), (10), (13), and (14).

It is worth noting that expressions for J

1

, J

2

, and J

3

are never given expliitly in terms of x, y, and z.

Suh expressions would be very onvoluted, and they are unneessary beause the serial omputation given

here an be used instead. Furthermore, we feel that this method yields some insight into the relationships

between the legs joint angles and the foot's three-dimensional oordinates.

There are many points q, in three-dimensional spae, for whih there are no joint angles J suh that

F

K

(J) = q. For these points, the inverse kinematis formulas are not appliable. One ategory of suh

points is intuitively lear: the points whose distane from the origin is greater than two. These are impossible

loations for the foot beause the leg is not long enough to reah them from the shoulder. There are also

many regions of spae that are exluded by the angle ranges of the three joints. However, there is one

unintuitive, but important, unreahable region, whih we all the impossible sphere. The impossible sphere

has a radius of 1 and is entered at the point (1; 0; 0). The following analysis explains why it is impossible

for the foot to be in the interior of this sphere.

Consider a point (x; y; z) in the interior of the illegal sphere. This means that

(x� 1)

2

+ y

2

+ z

2

< 1

x

2

� 2x+ 1+ y

2

+ z

2

< 1

x

2

+ y

2

+ z

2

< 2x:

Substituting d for

p

x

2

+ y

2

+ z

2

and dividing by two gives us

d

2

2

< x: (15)

Sine J

3

= 2 os

�1

�

d

2

�

(Equation (10)), os

J

3

2

=

d

2

, so by the double angle formula osJ

3

=

d

2

2

� 1, or

d

2

2

= 1 + osJ

3

. Substituting for

d

2

2

, we get

x > 1 + osJ

3

: (16)

This is preisely the ondition, as disussed above, under whih the alulation of J

2

breaks down. This

shows that points in the illegal sphere are not in the range of F

K

.

Oasionally, our parameterized walking algorithm requests a position for the foot that is inside the

impossible sphere. When this happens, we projet the point outward from the enter of the sphere onto its

21

C

4

y

z

2 � C

2

Figure 4: The foot traes a half ellipse as the robot walks forward.

surfae. The new point on the surfae of the sphere is attainable, so the inverse kinematis formulas are

applied to this point.

5.1.4 General Walking Struture

Our walk uses a trot-like gait in whih diagonally opposite legs step together. That is, �rst one pair of

diagonally opposite legs steps forward while the other pair is stationary on the ground. Then the pairs

reverse roles so that the �rst pair of legs is planted while the other one steps forward. As the Aibo walks

forward, the two pairs of diagonally opposite legs ontinue to alternate between being on the ground and

being in the air. For a brief period of time at the start of our developmental proess, we explored the

possibility of other gait patterns, suh as a walking gait where the legs step one at a time. We settled on

the trot gait after wathing video of RoboCup teams from previous years.

While the Aibo is walking forwards, if two feet are to be stationary on the ground, that means that

they have to move bakwards with respet to the Aibo. In order for the Aibo's body to move forwards in

a straight line, eah foot should move bakwards in a straight line for this portion of its trajetory. For the

remainder of its trajetory, the foot must move forward in a urve through the air. We opted to use a half

ellipse for the shape of this urve (Figure 4).

A foot's half-elliptial path through the air is governed by two funtions, y(t) and z(t), where t is the

amount of time that the foot has been in the air so far divided by the total time the foot spends in the air

(so that t runs from 0 to 1). While the Aibo is walking forwards, the value of x for any given leg is always

onstant. The values of y and z are given by

y(t) = C

1

� C

2

os(�t) (17)

and

z(t) = C

3

� C

4

sin(�t): (18)

In these equations, C

1

through C

4

are four parameters that are �xed during the walk. C

1

determines

how far forward the foot is and C

3

determines how lose the shoulder is to the ground. The parameters C

2

and C

4

determine how big a step is and how high the foot is raised for eah step (Figure 4). Our walk has

many other free parameters, whih are all desribed in Setion 5.1.7.

22

x

y

(a) (b)

Figure 5: The main movement diretion of the half ellipses hanges for (a) walking sideways, (b) turning in

plae. (The dark squares indiate the positions of the four feet when standing still.)

x

y

Figure 6: Combining forwards, sideways and turning motions. Eah omponent ontributes a vetor to the

ombination. Dashed lines show the resulting vetors. (We show only half of the ellipse lengths, for larity.)

With the vetors shown, the robot will be turning towards its right as it moves diagonally forward and right.

5.1.5 Omnidiretional Control

After implementing the forward walk, we needed sideways, bakwards, and turning motions. There is a nie

desription of how to obtain all these (and any ombination of these types of walks) in [12℄. We based our

implementation on the ideas from that paper.

Sideways and bakwards walks are just like the forward walk with the ellipse rotated around the z axis

(Figure 5a). For walking sideways, the ellipse is rotated 90

Æ

to the side towards whih the robot should

walk. For walking bakwards, the ellipse points in the negative y diretion. Turning in plae is a little more

ompliated. The four legs of the robot de�ne a irle passing through them. The diretion of the ellipse

for eah leg is tangent to this irle, pointing lokwise if the robot is to turn right and ounterlokwise to

turn left (Figure 5b).

Combinations of walking forwards, bakwards, sideways, and turning are also possible by simply om-

bining the di�erent omponents for the ellipses through vetor addition. For example, to walk forwards and

to the right at the same time, at an angle of 45

Æ

to the y axis, we would make the ellipses point 45

Æ

to the

right of the y axis. Any ombination an be ahieved as shown in Figure 6.

In pratie, the method desribed here worked well for ombinations of forwards and turning veloities,

but we had diÆulty also inorporating sideways veloities. The problem was that, after tuning the param-

23

eters (Setion 5.1.8), we found that the parameters that worked well for going forwards and turning did not

work well for walking sideways. It was not obvious how to �nd ommon parameters that would work for

ombinations of all three types of veloities.

In situations where we needed to walk with a non-zero sideways veloity, we frequently used a slower om-

nidiretional walk developed by a student in the Spring semester lass.

6

That walk is alled SPLINE WALK,

while the one being desribed here is alled PARAM WALK. Setion 5.2.3 disusses when eah of the walks

was used.

5.1.6 Tilting the Body Forward

Up until the Amerian Open, our walking module was restrited to having the Aibo's body be parallel to the

ground. That is, it did not allow for the front and bak shoulders to be di�erent distanes from the ground.

This turned out to be a severe limitation. During this time, we were unable to ahieve a forward speed of

over 150 mm/s. After relaxing this onstraint, only the slightest hand tuning was neessary to bring our

speed over 200 mm/s. After a signi�ant amount of hand tuning, we were able to ahieve a forwards walking

speed of 235 mm/s. (The parameters that ahieve this speed are given in Setion 5.1.8 and our proedure

for measuring walking speed is desribed in Setion 5.1.9.)

In many of the fastest and most stable walks the front legs touh the ground with their elbows when

they step. Apparently, this is far more e�etive than just having the feet touh the ground. We enable the

elbows to touh the ground by setting the height of the front shoulders to be lower than that of the bak

shoulders. However, this ability requires one more omputation to be performed on the foot oordinates

before the inverse kinematis equations are applied. That is, when the Aibo's body is tilted forward we still

want the feet to move in half ellipses that run parallel to the ground. This means that the points given by

equations 17 and 18 have to be rotated with respet to the x-axis before the inverse kinematis equations

are applied.

The angle through whih these points must be rotated is determined by the di�erene between the

desired heights of the front and bak shoulders and the distane between the front and bak shoulders. The

di�erene between the heights, d

h

, is a funtion of the parameters being used (the heights of the front and

bak shoulders are two of our parameters), but the distane between the front and bak shoulders is a �xed

body length distane whih we estimate at 1:64 in our units and all l

b

. Then the angle of the body rotation

is given by

� = sin

�1

�

d

h

l

b

�

: (19)

5.1.7 Desription of all the Parameters

This setion lists and desribes all twenty parameters of our Aibo walk. The units for most of the parameters

are distanes whih are in terms of leg-link length, as disussed in Setion 5.1.2. Exeptions are noted below.

� Forward step distane: How far forward the foot should move from its home position in one step.

� Side step distane: How far sideways the foot should move from its home position in one step.

� Turn step distane: How far eah half step should be for turning.

� Front shoulder height: How high from the ground the robot's front legs' J1 and J2 joints should be.

� Bak shoulder height: How high from the ground the robot's bak legs' J1 and J2 joints should be.

� Ground fration: What fration of a step time the robot's foot is on the ground. (The rest of the time

is spent with the foot in the air, making a half ellipse.) Between 0 and 1. Has no unit.

6

Aniket Murarka

24

� Front left y-o�set: How far out in the y-diretion the robot's front left leg should be when it's in its

home position.

� Front right y-o�set: How far out in the y-diretion the robot's front right leg should be when it's in

its home position.

� Bak left y-o�set: How far out in the y-diretion the robot's bak left leg should be when it's in its

home position.

� Bak right y-o�set: How far out in the y-diretion the robot's bak right leg should be when it's in its

home position.

� Front left x-o�set: How far out in the x-diretion the robot's front left leg should be when it's in its

home position.

� Front right x-o�set: How far out in the x-diretion the robot's front right leg should be when it's in

its home position.

� Bak left x-o�set: How far out in the x-diretion the robot's bak left leg should be when it's in its

home position.

� Bak right x-o�set: How far out in the x-diretion the robot's bak right leg should be when it's in its

home position.

� Front Clearane: How far up the front legs should be lifted o� the ground at the peak point of the half

ellipse.

� Bak Clearane: How far up the bak legs should be lifted o� the ground at the peak point of the half

ellipse.

� Diretion fwd: Whether the robot should move forwards or bakwards. Either 1 or -1. Has no unit.

� Diretion side: Whether the robot should move right or left. Either 1 or -1. Has no unit.

� Diretion turn: Whether the robot should turn towards its right or its left. Either 1 or -1. Has no

unit.

� Moving max ounter: Number of Open-R frames one step takes. Greater than 1. Has no unit.

5.1.8 Tuning the Parameters

One the general framework of our walk was set up, we were faed with the problem of determining good

values for all of the parameters of the walk. This proess was greatly failitated by the use of a tool we had

written that allowed us to telnet into the Aibo and hange walking parameters at run time. Thus we were

able to go bak and forth between altering parameters and wathing (or timing) the Aibo to see how fast it

was. This proess enabled us to experiment with many di�erent ombinations of parameters.

We foused most of our tuning e�ort on �nding as fast a straight forward walk as possible. Our tuning

proess onsisted of a mixture of manual hill-limbing and using our observations of the walk and intuition

about the e�ets of the parameters. For example, two parameters that were tuned by relatively blind hill-

limbing were Forward step distane and Moving max ounter. These parameters are very important and

it is often diÆult to know intuitively if they should be inreased or dereased. So tuning proeeded slowly

and with many trials. On the other hand, parameters suh as the front and bak learanes ould frequently

be tuned by notiing, for instane, that the front (or bak) legs dragged along the ground (or went too high

in the air). The fastest parameters we were able to �nd for our forward walk are given in the following table.

We found that these parameters worked well for ombinations of forward and turning veloities (with

the appropriate modi�ations to Forward step distane and Turn step distane). However, when we set the

25

Parameter Value

Forward step distane 0:74

Side step distane 0:0

Turn step distane 0:0

Front shoulder height 1:1

Bak shoulder height 1:6

Ground fration 0:5

Front left y-o�set 0:7

Front right y-o�set 0:7

Bak left y-o�set �0:4

Bak right y-o�set �0:4

Front left x-o�set �0:25

Front right x-o�set 0:25

Bak left x-o�set 0:0

Bak right x-o�set 0:0

Front learane 0:9

Diretion fwd 1

Diretion side 1

Diretion turn 1

Moving max ounter 92

Table 3: Fast Walking Parameter Values

forwards and turning omponents to zero and tried to walk straight sideways, the robot would urve quite

sharply forwards. Thus to walk with a non-zero sideways veloity we used either a di�erent set of parameters

or SPLINE WALK.

5.1.9 Odometry Calibration

As the Aibo walks, it keeps trak of its forward, horizontal, and angular veloities. These values are used

as inputs to our partile �ltering algorithm (see Setion 8) and it is important for them to be as aurate

as possible. The Movement Module takes a walking request in the form of a set of forward, horizontal, and

angular veloities. These veloities are then onverted to walking parameters. The Brain assumes that the

veloities being requested are the ones that are atually attained, so the auray of the odometry relies on

that of those onversions.

Sine the step distane parameters are proportional to the distane traveled eah step and the time for

eah step is the same, the step distane parameters should theoretially be proportional to the orresponding

veloities. This turned out to be true to a fair degree of auray for ombinations of forward and turning

veloities. As mentioned above, we needed to use a di�erent set of parameters for walking with a non-zero

sideways veloity. These parameters did not allow for a fast forward walk, but with them the veloities were

roughly proportional to the step distanes for ombinations of forward, turning, and sideways veloities.

The proportionality onstants are determined by a diret measurement of the relevant veloities. To

measure forward veloity, we use a stopwath to time the robot walking from one goal line to the other with

its forward walking parameters. The time taken is divided into the length of the �eld, 4200 mm, to yield

the forward veloity. The same proess is used to measure sideways veloity. To measure angular veloity,

we exeute the walk with turning parameters. Then we measure how muh time it takes to make a ertain

number of omplete revolutions. This yields a veloity in degrees per seond. Finally, the proportionality

onstants were alulated by dividing the measured veloities by the orresponding step distane parameters

that gave rise to them.

Sine the odometry estimates are used by loalization (Setion 8), the odometry alibration onstants

26

ould be tuned more preisely by running loalization with a given set of odometry onstants and observing

the e�ets of the odometry on the loalization estimates. Then we ould adjust the odometry onstants in

the appropriate diretion to make loalization more aurate. We feel that we were able to ahieve quite

aurate odometry estimates by a repetition of this proess.

5.2 General Movement

Control of the Aibo's movements ours at three levels of abstration.

1. The lowest level, the \movement module," resides in a separate Open-R objet from the rest of our ode

(as desribed in the ontext of our general arhiteture in Setion 10) and is responsible for sending

the joint values to OVirtualRobotComm, the provided Open-R objet that serves as an interfae to the

Aibo's motors.

2. One level above the movement module is the \movement interfae," whih handles the work of al-

ulating many of the parameters partiular to the urrent internal state and sensor values. It also

manages the inter-objet ommuniation between the movement module and the rest of the ode.

3. The highest level ours in the behavior module itself (Setion 12), where the deisions to initiate or

ontinue entire types of movement are made.

5.2.1 Movement Module

The movement module shares three onnetions (\servies") with other Open-R objets: one with the

OVirtualRobotComm objet mentioned above, and two with the Brain, the Open-R objet whih inludes

most of our ode (see Setion 10 for a desription of our general arhiteture), inluding the C++ objet

orresponding to the movement interfae desribed in Setion 5.2.2. It uses one onnetion with the Brain

to take requests from the Brain for types of high-level movement, suh as walking in a partiular diretion or

kiking. It then onverts them to joint values, and uses its onnetion with OVirtualRobotComm to request

that joint positions be set aordingly. These requests are sent as often as is allowed { every 8 milliseonds.

The seond onnetion with the Brain allows the movement module to send updates to the Brain about

what movement it is urrently performing. Among other things, this lets the Brain know when a movement

it requested has �nished (suh as a kik). The ow of ontrol is illustrated by the arrows in Figure 7 (the

funtions identi�ed in the �gure are de�ned below). Thik arrows represent a message ontaining information

(from Subjet to Observer); thin arrows indiate a message without further information (from Observer to

Subjet). An arrow ending in a null marker indiates that the message does nothing but enable the servie

to send another message.

Beause the movement module must send an Open-R message to OVirtualRobotComm every time it

wants to hange a joint position, it is neessary for the movement module to keep an internal state so

that it an resume where it left o� when OVirtualRobotComm returns ontrol to the movement module.

Whenever this happens, the movement module begins exeution with the funtion ReadyEffetor, whih

is alled automatially every time OVirtualRobotComm is ready for a new ommand. ReadyEffetor alls

the partiular funtion orresponding to the urrent movement module state, a variable that indiates whih

type of movement is urrently in progress. Many movements (for example, walking and kiking) require that

a sequene of sets of joint positions be arried out, so the funtions responsible for these movements must

be exeuted multiple times (for multiple messages to OVirtualRobotComm). The states of the movement

module are summarized in Table 4.

Whereas kiking and getting up require the Aibo's head to be doing something spei�, neither the idle

state nor the two walks require anything in partiular from the head joints. Furthermore, it is useful to allow

the head to move independently from the legs whenever possible (this allows the Aibo to \keep its eye on the

ball" while walking, for instane). Thus the movement module also maintains a separate internal state for

the head. If the movement module's state is KICK MOTION or GETUP MOTION when ReadyEffetor

begins exeution, the new joint angles for the head will be spei�ed by the funtion orresponding to the

27

OVirtualRobotComm MovementModule Brain

(ReceiveMovement)

Update Brain’s knowledge of MovementModule state.

(ReadyEffector)

If state has changed, notify Brain.

Send new joint values to robot.

(MoveToNewAngles)

Adjust motors to reflect new joint values.

(NewParamsNotify) Send movement request.

(Movement.SendCommand)

change state if current action is finished

calculate new joint values

...

...

...

Change MovementModule state
according to received request.

determine movement corresponding to current behavior

...

...

Figure 7: Inter-objet ommuniation involving the movement module. Thik arrows represent a message

ontaining information (from Subjet to Observer); thin arrows indiate a message without further informa-

tion (from Observer to Subjet). An arrow ending in a null marker indiates that the message does nothing

but enable the servie to send another message.

State Desription

INIT Initial state

IDLE No leg motion, but joint gains are set (robot is standing)

7

PARAM WALK Fastest walk

SPLINE WALK Omnidiretional slower walk

KICK MOTION Kiking

GETUP MOTION No joint position requests being sent to OVirtualRobotComm,

thus allowing built-in Sony getup routines ontrol over all motors

Table 4: Movement module states

movement module state. Otherwise, ReadyEffetor alls a funtion orresponding to the urrent head state,

whih determines the new joint angles for the head, and the rest of the joint angles are determined by the

funtion for the urrent movement module state. A summary of the head states appears in Table 5.

The movement module listens for ommands with a funtion alled NewParamsNotify. When the Brain

sends a movement request, NewParamsNotify aepts it and sets the movement module state and/or head

state aordingly. When the internal state is next examined { this ours in the next all to ReadyEffetor

(that is, after the next time the joint positions are set by OVirtualRobotComm) { the movement module

begins exeuting the requested movement. See Table 6 for a summary of the possible requests to the

movement module. Note that both a head movement and a body movementmay be requested simultaneously,

with the same message. However, if the body movement that is requested needs ontrol of the head joints,

the head request is ignored.

7

In pratie, this is implemented by exeuting a \walk" with forward veloity, side veloity, turn veloity, and leg height all

equal to 0.

28

State Desription

IDLE Head is still (but joint gains are set)

MOVE Moving head to a spei� position

SCAN Moving head at a onstant speed in one diretion

KICK Exeuting a sequene of head positions

Table 5: Head states

Type of request Explanation Assoiated parameters

MOVE NOOP don't hange body movement

MOVE STOP stop leg movement

MOVE PARAM WALK start walking using ParamWalk x-veloity, y-veloity, angular veloity

MOVE SPLINE WALK start walking using SplineWalk x-destination, y-destination, angular destination

MOVE KICK exeute a kik type of kik

MOVE GETUP get up from a fall

DONE GETUP robot is now upright, resume motions

HEAD NOOP don't hange head movement

HEAD MOVE move head to a spei� angle

HEAD SCAN san head at onstant veloity san speed, diretion

HEAD KICK kik with the head type of kik

HEAD STOP stop head movement

Table 6: Possible requests to the movement module

5.2.2 Movement Interfae

The movement interfae is part of the Brain Open-R objet. Its main funtion is to translate high-level

movement ommands into movement module requests, so that the Brain an simply speify high-level move-

ment behaviors (suh as \turn toward this angle and kik with this kik") and let the movement interfae

take are of the rest.

During eah Brain yle, the behavior modules speify movements by alling movement interfae fun-

tions, whih ompute the ombination of movement module requests neessary to arry out the spei�ed

movement. If the requested types of movement do not interfere with eah other (for example, if both a head

san and a forward walk are requested in the same Brain yle), then all requested movements are ombined

in the message that is eventually sent to the movement module. Finally, at the end of eah Brain yle, the

funtion Movement.SendCommand is alled. This funtion takes are of sending the message to the movement

module ontaining the request, and ensuring that redundant messages are not sent.

The movement interfae provides funtions for basi movements suh as walking forward, turning, moving

the head to a position, stopping the legs or head, and getting up from a fall. It also provides several funtions

for more omplex movements, whih are desribed here.

Head San When searhing for the ball, it is helpful to move the head around in some fashion so that

more of the �eld an be seen. On the one hand, the more quikly the �eld an be overed by the san, the

more quikly the ball an be found. On the other hand, if the head moves too quikly, the vision will not

be able to reognize the ball, beause it will not be in sight for the required number of frames. Therefore

it makes sense to try to over as muh of the �eld with as little head movement as possible. At �rst we

believed that it was not possible to over the entire height of the �eld with fewer than three horizontal sans,

so we used a three-layer head san at the Amerian Open. However, by wathing other teams, we beame

onvined that it must be possible to over the entire relevant portion of the �eld with two head sans. After

some experimentation, we managed to eliminate the persistent blind spot in the middle of a two-layer head

29

san that we reated. Thus, the movement interfae now provides a funtion that takes are of exeuting

the two-layer head san. It also allows the behaviors to speify whih orner the san starts from. This is

beause the two-layer head san typially ours immediately after losing the ball, and often the brain knows

whih diretion the ball is most likely to be in given where it was last seen. Thus allowing the starting orner

to be spei�ed allows this information to be used.

Follow Objet One the robot sees the ball, walking towards it is ahieved by two simultaneous ontrol

laws. The �rst keeps the head pointed diretly at the ball as the ball moves in the image. This is ahieved

by taking the horizontal and vertial distanes between the loation of the ball in the image and the enter

of the image and onverting them into hanges in the head pan and tilt angles.

Seond, the Aibo walks towards the diretion that its head is pointing. It does this by walking with a

ombination of forward and turning veloities. As the head's pan angle hanges from the straight ahead

position towards a sidewise-faing position, the forward veloity dereases linearly (from its maximum) and

the turning veloity inreases linearly (from zero). In ombination, these poliies bring the Aibo towards the

ball.

While we were able to use the above methods to have the Aibo walk in the general diretion of the

ball, it proved quite diÆult to have the Aibo reliably attain ontrol of the ball. One problem was that the

robot would knok the ball away with its legs as it approahed the ball. We found that if we inreased the

proportionality onstant of the turning veloity, it would allow the robot to fae the ball more preisely as

it went up to the ball. Then the ball would end up between the Aibo's front legs instead of getting knoked

away by one of them. Another problem that arose was that the Aibo oasionally bumped the ball out of

the way with its head. We dealt with this by having the robot keep its head pointed 10

Æ

above the ball.

Both of these solutions required some experimentation and tuning of parameters.

Trak Objet This funtion follows a ball with the head, and turns the body in plae when neessary so

as not to lose sight of the ball. It is used hiey for the goalie.

Strafe Before we had loalization in plae, we needed a way to turn the robot around the ball so that it

ould kik it towards the goal. The problem was that we needed to keep its head pointing down the �eld so

it ould see the goal, whih made turning with the ball pinhed underneath the hin (see below) unfeasible.

Stra�ng onsisted of walking with a sideways veloity and a turning veloity, but no forward veloity. This

aused the Aibo to walk sideways in a irle around the ball. During this time, it was able to keep its head

pointed straight ahead so that it ould stop when it saw the goal.

Chin Pinh Turn This is a motion whih lowers the head (to a tilt angle of �55

Æ

) to trap the ball below

the hin, and then turns some number of degrees while the ball is trapped there. One we had loalization

in plae, this replaed the strafe funtion just desribed, beause it is both faster and more reliable at not

losing the ball.

Tuk Ball Under This funtion walks forward slowly while pulling the head down. It helps the Aibo

attain ontrol of the ball, and is typially used for the transition between follow objet and hin pinh turn.

5.2.3 High-Level Control

For the most part, it is the task of the behaviors to simply hoose whih ombinations of the movement

interfae funtions just desribed should be exeuted. However, there are exeptions; sometimes there is a

reason to handle some details of movement at the level of the behavior. One suh exeption is establishing

the duration of the hin pinh turn. Beause loalization is used to determine when to stop the hin pinh

turn, it makes more sense to deal with this in the behavior than in the movement interfae, whih does not

otherwise need to get loalization information.

30

If the behavior hooses to do a hin pinh turn (see Setion 12.1.2 for details on when this happens),

it will speify an Aibo-relative angle that it wishes to turn toward as well as whih way to turn (by the

sign of the angle). This angle is then onverted to an angle relative to the robot's heading to the o�ensive

goal.

8

The robot ontinues to turn

9

until the robot's heading to the opponent goal is as desired, and then

the behavior transitions to the kiking state.

While we use PARAM WALK for the vast majority of our walking, we use SPLINE WALK in most ases

where we need to walk with a non-zero sideways veloity. An important example of this is in the supporter

role (Setion 13.2.1), where we need to walk to a point while faing a ertain diretion. SPLINE WALK was

also used for part of the obstale avoidane hallenge task. In general, we deided whih walk to use in any

partiular situation by trying both and seeing whih one was more e�etive.

6 Fall Detetion

Sony provides routines that enable the robot to detet when it's fallen and that enable it to get up. Our

initial approah was to simply use these routines. However, as our walk evolved, the angle of the Aibo's

trunk while walking beame steeper. This, ombined with variations between robots, aused several of our

robots to think they were falling over every few steps and to try repeatedly to get up. To remedy this, we

implemented a simple fall detetion system of our own.

The fall detetion system funtions by noting the robot's x- and y-aelerometer sensor values eah Brain

yle. If the absolute value of an aelerometer reading is greater than some onstant (we used 6; 800; 000)

for a number (5) of onseutive yles, a fall is registered.

It is also possible to turn fall detetion o� for some period of time. Many of our kiks require the Aibo

to pass through a state whih would normally register as a fall, so fall detetion is disabled while the Aibo is

kiking. If the Aibo falls during a kik, the fall detetion system registers the fall when the kik is �nished,

and the Aibo then gets up.

7 Kiking

The robot's kik is spei�ed by a sequene of poses. A Pose = (j

1

; : : : ; j

n

), j

i

2 <, where j represents the

positions of the n joints of the robot. The robot uses its PID mehanism to move joints 1 through n from

one Pose to another over a time interval t. We speify eah kik as a series of moves fMove

1

; : : : ;Move

m

g

where aMove = (Pose

i

; P ose

f

;�t) andMove

jPose

f

=Move

(j+1)Pose

i

, 8j 2 [1;m�1℄. All of our kiks only

used 16 of the robot's joints (leg, head, and mouth). Table 7 depits the used joints and joint desriptions.

7.1 The Initial Kik

In the beginning stages of our team development, our main fous was on reating modules (Movement,

Vision, Loalization, et.) and inorporating them with one another. Development of kiks did not beome

a high priority until after the other modules had been inorporated. Thus, we reated a \�rst kik" early on

to address the needs of the other modules as they developed and reated other kiks muh later to expand

our strategi apabilities.

We deided to model our �rst kik after what seemed to be the predominant goal-soring kik from

previous RoboCup ompetitions. During the kik, the robot raises its two front legs up and drops them onto

the sides of the ball. The fore of the falling legs propels the ball forward. Our �rst kik, alled the \front

power kik" tried to ahieve this e�et.

8

The hoie of heading to the o�ensive goal as the landmark for determining when the hin pinh turn should stop is due

to the fat that the hin pinh turn's destination is often faing the opponent goal, as well as the fat that there was already

a onvenient GlobalMap interfae funtion that provided heading to the o�ensive goal. In theory, anything else would work

equally well.

9

That is, the behavior repeatedly sends requests to the movement interfae to exeute the hin pinh turn.

31

joint joint desription

j

1

front right rotator

j

2

front right abdutor

j

3

front right knee

j

4

front left rotator

j

5

front left abdutor

j

6

front left knee

j

7

bak right rotator

j

8

bak right abdutor

j

9

bak right knee

j

10

bak left rotator

j

11

bak left abdutor

j

12

bak left knee

j

13

head tilt joint

j

14

head pan joint

j

15

head roll joint

j

16

mouth joint

Table 7: Joints used in kiks

We wanted our front power kik to transition from any walk without prematurely tapping the ball out

of the way. Thus, we started the kik in a \broadbase" position in whih the robot's torso is on the ground

with its legs spread out to the side. If the robot were to transition into the front power kik from a standing

position, the robot would drop to the ground while pulling its legs away from the ball. From this broadbase

position, the robot then moves its front legs together to enter the ball. After the ball has been entered,

the robot moves its front legs up above its head and then quikly drops the front legs onto the sides of the

ball, kiking the ball forward.

We found that the kik moves the ball relatively straight ahead for a distane of up to 3 meters. However,

we notied that the robot's front legs would miss the ball if the ball were within 3m of the robot's hest.

We resolved this issue by using the robot's mouth to push the ball slightly forward before dropping its legs

on the ball.

7.2 A General Kik Framework

We soon realized that we would need to reate several di�erent kiks for di�erent purposes. To that end,

we started thinking of the kik-generation proess in more general terms. In this setion we formalize that

proess.

The kik is an example of a �ne-motor ontrol motion where small errors matter. Creation of a kik

requires speial attention to eah Pose. A few angles' di�erene ould a�et whether the robot makes

ontat with the ball. Even a small di�erene in �t in a Move ould a�et the suess of a kik. To make

matters more ompliated, our team needed the kik to transition from and to a walk. More onsideration

had to be taken to ensure that neither the walk nor the kik disrupted the operation of the other.

We devised a two-step tehnique for kik-generation:

1. Creating the kik in isolation from the walk.

2. Integrating the kik into the walk.

7.2.1 Creating the Critial Ation

We �rst reated the kik in isolation from the walk. The Moves that omprise the kik in isolation onstitute

the ritial ation of the kik. To obtain the joint angle values for eah Pose, we used a tool that aptured

32

all the joint angle values of the robot after physially positioning the robot in its desired pose. We �rst

positioned the robot in the Pose in whih the robot ontats the ball for the kik and reorded j

1

; : : : ; j

n

for

that Pose. We alled this Pose

b

.

We then physially positioned the robot in the Pose from whih we wanted the robot to move to Pose

b

.

We alled this Pose

a

. We then reated a Move m = (Pose

a

; P ose

b

;�t) and wathed the robot exeute m.

At this point of kik reation, we were primarily onerned with the path the robot took from Pose

a

to

Pose

b

. Thus, we abstrated away the �t of the Move by seleting a large �t that enabled us to wath the

path from Pose

a

to Pose

b

. We typially seleted �t to be 64. Sine movement module requests are sent

every 8 milliseonds, this Move took 64 * 8 milliseonds to exeute.

If the Move did not travel a path that allowed the robot to kik the ball suessfully, we then added an

intermediary Pose

x

between Pose

a

and Pose

b

and reated a sequene of two Moves f(Pose

a

; P ose

x

;�t

i

);

(Pose

x

; P ose

b

;�t

i+1

)g and wathed the exeution. Again, we abstrated away �t

i

and �t

i+1

, typially

seleting 64. After wathing the path for this sequene of Moves, we repeated the proess if neessary.

After we were �nally satis�ed with the sequene of Moves in the ritial ation, we tuned the �t for eah

Move. Our goal was to exeute eah Move of the ritial ation as quikly as possible. Thus, we redued �t

for eah Move individually, stopping if the next derement disrupted the kik.

7.2.2 Integrating the Critial Ation into the Walk

The seond step in reating the �nely ontrolled ation involves integrating the ritial ation into the walk.

There are two points of integration: (1) the transition from the walk to the ritial ation, (2) the transition

from the ritial ation to the walk.

We �rst fous on the Move i = (Pose

y

; P ose

a

;�t), where Pose

y

2 fall possible poses of the walkg. Sine

i preedes the ritial ation, there may be ases in whih i adds unwanted momentum to the ritial ation

and disrupts it. If i had suh ases, we found a Pose

s

, in whih f(Pose

y

; P ose

s

;�t); (Pose

s

; P ose

a

;�t)g

did not lend unwanted momentum to the ritial ation. We all this the initial ation. The Pose

s

we used

mirrored the idle position of the walk. The idle position of the walk is the Pose the robot assumes when

walking with 0 veloity. We then added the Move (Pose

s

; P ose

a

;�t), abstrating away the �t, to the moves

of the ritial ation and wathed the path of exeution.

As with the reation of the ritial ation, we then added intermediary Poses until we were satis�ed with

the sequene of Moves from Pose

y

to Pose

a

. We then �ne-tuned the �t for the added Moves.

Finally, at the end of every kik during game play the robot assumes the idle position of the walk, whih

we all Pose

z

, before ontinuing the walk. This transition to Pose

z

takes 1 movement yle. Thus we

onsider the last Move of the kik, f , to be (Pose

b

; P ose

z

; 1). Sine f follows the ritial ation, there may

be ases in whih f hinders the robot's ability to resume walking.

In suh ases, as with the reation of the ritial ation and the initial ation, we then added intermediary

Poses until we were satis�ed with the sequene of Moves from Pose

b

to Pose

z

. We all the Moves between

the intermediary Poses the �nal ation. We then �ne-tuned the values of �t used in the �nal ation.

The sequene of Moves onstituting the initial ation, ritial ation, and �nal ation make up the kik.

7.3 Head Kik

After many of our modules had been integrated, the need arose for a kik in a non-forward diretion. Inspired

by previous RoboCup teams, deided that the head ould be used to kik the ball to the left or to the right.

During the head kik, the robot �rst leans in the diretion opposite of the diretion it intends to kik the

ball. The robot then moves its front leg (left leg when kiking left, right leg when kiking right) out of the

way. Finally, the robot leans in the diretion of the kik as the head turns to kik the ball.

The head kik moves the ball almost due left (or right) a distane of up to 0.5 meters. We disovered

that the head kik was espeially useful when the ball was lose to the edge of the �eld. The robot ould

walk to the ball, head kik the ball along the wall, and almost immediately ontinue walking, whereas the

front power kik frequently kiked the ball against the wall, e�etively moving the ball very little, if at all.

33

7.4 Chest Push Kik

The reation of the head kik informed us that the robot ould enter and exit a kik muh faster when the

kik ourred with the robot in a standing position. We thus reated the hest push kik in hopes that its

exeution would be muh faster than that of the front power kik. During the hest push kik, the robot

quikly leans its hest into the ball. This ours while the robot remains in a standing position.

To reate the kik, we �rst isolated the kik from the walk. The following table shows the ritial ation

for the hest push kik. In these tables eah value of �t is listed in the row of the Pose that ends the

orresponding Move.

j

1

j

2

j

3

j

4

j

5

j

6

j

7

j

8

j

9

j

10

j

11

j

12

j

13

j

14

j

15

j

16

�t

Pose

1

-12 30 91 -12 30 91 -70 45 104 -70 45 104 0 0 0 0 64

Pose

2

-120 90 145 -120 90 145 120 25 125 120 25 125 0 0 0 0 1

Pose

3

-12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64

Table 8: Chest push kik ritial ation

We then integrated the walk with the kik. Testing revealed that the robot suessfully kiked the

ball 55% of the time and fell over after 55% of the suessful kiks. Sine (Pose

y

; P ose

1

;�t) added

unwanted momentum to the ritial ation, we reated an initial ation to preede the ritial ation.

f(Pose

y

; P ose

s

; 64); (Pose

s

; P ose

1

; 64)g does not lend unwanted momentum to the ritial ation. Test-

ing revealed that the robot now suessfully kiked the ball 100% of the time. The following table shows the

initial ation with the ritial ation.

j

1

j

2

j

3

j

4

j

5

j

6

j

7

j

8

j

9

j

10

j

11

j

12

j

13

j

14

j

15

j

16

�t

Pose

s

-12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64

Pose

1

-12 30 91 -12 30 91 -70 45 104 -70 45 104 0 0 0 0 64

Pose

2

-120 90 145 -120 90 145 120 25 125 120 25 125 0 0 0 0 1

Pose

3

-12 30 91 -12 30 91 -30 6 104 -30 6 104 0 0 0 0 64

Table 9: Chest push kik initial ation and ritial ation

Sine the ritial ation did not add unwanted momentum that hindered the robot's ability to resume its

baseline motion, there was no need to reate a �nal ation.

We found that the hest push kik moves the ball relatively straight ahead. It is also very fast. However,

the distane the ball travels after the hest push kik is signi�antly smaller than the distane the ball travels

after the front power kik. Thus, we deided against using the hest push kik instead of the front power

kik during game play.

7.5 Arms Together Kik

After reating kiks geared toward soring goals, we realized that we needed a kik for the goalie to blok the

ball from entering its goal. Deiding that speed and overage area were more important than the diretion

of the kik, we reated the arms together kik. During the arms together kik, the robot �rst drops into

broadbase position mentioned in Setion 7.1. The robot then swings its front left leg inward. After that, the

robot swings its front right leg inward as it swings its front left leg bak out. The arms together kik proved

suessful at quikly propelling the ball away from the goal.

7.6 Fall Forward Kik

After attending the Amerian Open, we saw a need for a forward diretion kik more powerful than the

front power kik. Inspired by a kik used by the CMPak team from Carnegie Mellon, we reated the fall

34

forward kik. The fall forward kik makes use of the forward momentum of the robot as it falls from standing

position to lying position. Sine the kik begins in a standing position, the robot an quikly transition from

the walk to the kik. However, sine the kik ends in a lying position, the robot does not transition from

the kik bak to the walk as quikly.

We �rst isolated the kik from the walk. The following table shows the ritial ation.

j

1

j

2

j

3

j

4

j

5

j

6

j

7

j

8

j

9

j

10

j

11

j

12

j

13

j

14

j

15

j

16

�t

Pose

1

-5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32

Pose

2

-100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32

Table 10: Fall forward kik ritial ation

We then integrated the walk with the kik. There was no need to reate an initial ation beause any

momentum resulting from (Pose

y

; P ose

1

; 32) was in the forward diretion (the same diretion we wanted

the robot to fall). However, testing revealed that (Pose

2

; P ose

z

;�t) aused the robot to fall forward on its

fae every time. Although the robot suessfully kiked the ball, the robot ould not immediately resume

walking. In this situation, the robot had to wait for its fall detetion to trigger and tell it to get up before

resuming the walk. The get up routine triggered by fall detetion was very slow. Thus, we found a Pose

g

suh that f(Pose

2

; P ose

g

; 32); (Pose

g

; P ose

z

;�t)g does not hinder the robot's ability to resume walking.

The following table shows the ritial ation with Move(Pose

2

; P ose

g

; 32).

j

1

j

2

j

3

j

4

j

5

j

6

j

7

j

8

j

9

j

10

j

11

j

12

j

13

j

14

j

15

j

16

�t

Pose

1

-5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32

Pose

2

-100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32

Pose

g

90 90 0 90 90 0 100 6 75 100 6 75 45 -90 0 0 32

Table 11: Fall forward kik ritial ation and f(Pose

2

; P ose

g

; 32)g

From observation, it is noted that transitioning from Pose

2

diretly to Pose

g

is not ideal. The robot

would fall over 25% of the time during (Pose

2

; P ose

g

; 32). Thus, we added Pose

w

to preede Pose

g

in the

�nal ation. Afterwards, the robot no longer fell over when transitioning from the kik to the walk. The

following table shows the entire �nely ontrolled ation, onsisting of the ritial ation and the �nal ation.

j

1

j

2

j

3

j

4

j

5

j

6

j

7

j

8

j

9

j

10

j

11

j

12

j

13

j

14

j

15

j

16

�t

Pose

1

-5 0 20 -5 0 20 -35 6 75 -35 6 75 45 -90 0 0 32

Pose

2

-100 23 0 -100 23 0 100 6 75 100 6 75 45 -90 0 0 32

Pose

w

-100 90 0 -100 90 0 100 6 75 100 6 75 45 -90 0 0 32

Pose

g

90 90 0 90 90 0 100 6 75 100 6 75 45 -90 0 0 32

Table 12: Fall forward kik ritial ation and �nal ation

The fall forward kik exeuted quikly and potentially moved the ball the entire distane of the �eld (4.2

meters). Unfortunately, the fall forward kik did not reliably propel the ball diretly forward. Thus, in game

play, we used the fall forward kik in the defensive half of the �eld and used the front power kik for more

reliable goal soring in the o�ensive half of the �eld.

One unexpeted side-e�et of adding Pose

g

to the end of the fall forward kik was that the outstrethed

legs in Pose

g

added additional ball overage. A ball that the fall forward ation missed beause it was not

loated around the robot's hest would atually be propelled forward if the ball was just in front of one of

the front legs. Thus, the fall forward kik, whih moves the ball away muh farther than the arms together

kik, also beame our primary goalie blok.

35

7.7 Yoshi Kik

Games at the Amerian Open also inspired us to reate the yoshi kik. During the yoshi kik, the robot

launhes its body over the ball and kiks the ball out from behind it. The yoshi kik ideally works well

in situations when the robots are rowded together around the ball. However, beause the yoshi kik is

still somewhat unreliable, the behavior used for RoboCup games only exeutes a yoshi kik in very spei�

irumstanes, whih in pratie our rarely. (See Setion 12.1.2 for details.)

8 Loalization

Sine it requires at least vision and preferably loomotion to already be in plae, loalization was a rela-

tively late emphasis in our e�orts. In fat, it did not truly ome into plae until after the Amerian Open

Competition at the end of April. Before that time, we had been working on a preliminary approah that

was eventually disarded and replaed by the urrent one.

For self-loalization, the Austin Villa team implemented a Monte-Carlo loalization approah similar to

the one used by the German Team [5℄. This approah uses a olletion of partiles to estimate the global

position and orientation of the robot. These estimates are updated by visual perepts of �xed landmarks

and odometry data from the robot's movement module (see Setion 5.1.9). The partiles are averaged to

�nd a best guess of the robot's pose.

We have extended the approah of the German Team to improve the auray of the observation updates.

Rather than using only the most urrent landmark observations, our approah maintains a history of reent

observations that are averaged aording to their estimated auray. Beause it is rare for the robot to

gather suÆient information in a single amera frame to triangulate its position, it is important to inorporate

visual information from the reent past. At the same time, if visual data is inaurate, reusing it again and

again an aggravate the problem. Our approah is able to leverage past data while, in most situations,

robustly tolerating oasional bad inputs.

8.1 Basi Partile Filtering Approah

The goal of the loalization module is to alulate a probability distribution over the possible loations and

orientations of the robot. Rather than modeling this distribution parametrially, Monte-Carlo loalization

uses a �nite set of samples alled partiles. Eah partile an be seen as a hypothesis for the urrent pose

of the robot: < x; y; � > where < x; y > is the position of the robot and � is its orientation in the global

oordinate system. Along with a pose hypothesis, eah partile is assigned a probability, p, representing the

likelihood that the estimate is orret. In our implementation, we used a set of 100 of these partiles, whih

we found experimentally to provide a suÆient level of auray without substantially lowering the rate of

our main exeution yle.

During eah exeution yle of the robot, the loalization module updates the set of partiles in three

steps. The �rst step is the motion update in whih the partiles are moved based on the physial movement

of the robot. The next step is the observation update in whih the partile probabilities are adjusted for the

latest visual information. Finally, resampling is done to stohastially move the partiles loser to the most

likely pose estimate. The following setions desribe these updates in detail.

8.2 Motion Update

Based on the urrently exeuting walk or kik, the movement module returns an estimate of the robot's

hange in position and orientation sine the last loalization update: < Æx; Æy; Æ� >. This hange is added

to eah partile's pose aording to the following equation:

pose

new

= pose

old

+ < Æx

0

; Æy

0

; Æ� > (20)

where Æx

0

and Æy

0

are Æx and Æy translated from the oordinate system of the robot into the oordinate

system of the partile (see Appendix A.9). Beause the odometry information is noisy, we assume that

36

motion updates derease the ertainty in our pose estimate. For this reason, after eah motion update, the

probability of eah partile is deayed aording to the following equation:

p

new

= p

old

(1� �) (21)

In our implementation, we hose the value 0:02 for �. This value was hosen, without experimentation, so

that the probability would drop by half every ouple of seonds.

8.3 Observation Update

After the urrent frame has been proessed by the vision module, the loalization module reeives a list of

landmark observations. For our purposes, the �eld onsists of 10 identi�able �xed landmarks: 6 beaons and

4 goal edges.

10

Eah observation onsists of a landmark identity (e.g. yellow goal's left edge), a distane

estimate, d, a bearing estimate, �, and a probability, p̂, representing the ertainty that the observed landmark

was identi�ed orretly. These observations are used to update the landmark memory struture, whih is

desribed in the next setion.

8.3.1 Landmark Memory

The landmark memory data struture stores a history of reent observations in order to make aurate

estimates of the robot's relative position to landmarks. For eah of the 10 landmarks, the landmark memory

maintains a list ontaining past observations. Along with the observation itself, eah list entry inludes the

following data:

� �

2

d

: variane of distane estimate

� �

2

�

: variane of bearing estimate

� T : absolute time the observation was made

� �d: distane robot has moved sine this observation

� ��: total angle the robot has rotated sine this observation

An observation is modeled as a 2-d Gaussian distribution with mean < d; � > and variane < �

2

d

; �

2

�

>. The

initial varianes are alulated from d and p̂ using the following equations:

�

2

d

=

d

p̂ � 10

(22)

�

2

�

= tan

�1

�

W

b

d

�

(23)

where W

b

is the atual width of a beaon. Beause the distane of a beaon is more diÆult to estimate

as it gets farther away, we made the distane error proportional to d. Also, we made the error inversely

proportional to our ertainty in landmark identity so that false landmark sightings would generate estimates

with high varianes. The bearing to a beaon is atually easier to estimate as it gets farther away. For this

reason, we made the bearing variane inversely proportional to distane. These error estimates are rude,

but we found them to be satisfatory in pratie.

When an observation is added to the list, the timestamp T is set to the urrent time and �d and �� are

initialized to 0.

10

We hose to use the left and right edges of the goals as landmarks, instead of the goals themselves, beause the goal edges

had more preise loations and were more numerous.

37

8.3.2 Removing Obsolete Observations

During every motion update (see Setion 8.2), the entries in the landmark memory are modi�ed to reet

passing time and robot movement. For eah observation entry, the �d and �� values are inreased aord-

ing to the odometry data returned by the movement module. The observation estimates are updated to

orrespond to the robot's new position and orientation. Also, the varianes are inreased proportionally to

the robot's movement. These updates are summarized by the following equations:

�d

0

= �d+

p

(Æx)

2

+ (Æy)

2

(24)

��

0

= �� + jÆ�j (25)

d

0

=

p

(d os(�)� Æx)

2

+ (d sin(�)� Æy)

2

(26)

�

0

= atan2 (d sin(�)� Æy; d os(�)� Æx)� Æ� (27)

�

2

d

0

= �

2

d

+

p

(Æx)

2

+ (Æy)

2

(28)

�

2

�

0

= �

2

�

+

jÆ�j

2

(29)

After the observation entries have been updated, we deide if the observation should remain in the list.

If the observation has a high variane (�

2

d

> 500mm or �

2

�

> 22

o

), then it is removed from the landmark

memory. Additionally, if the robot has traveled too far (�d > 150mm) or turned too muh (�� > 10

o

)

sine the observation was made, then the observation is thrown out. Finally, if the observation is too old

(time� T > 3s) then the entry is deleted. This way, even if the robot is standing still, old observations do

not stay around forever. All thresholds were hosen without experimentation.

8.3.3 Merging Past Observations

For eah of the 10 �xed landmarks, the landmark memory ontains a list of 0 or more relative position

estimates. To use this data for updating the partiles, we must merge the entries within eah list to �nd a

single set of landmark observations.

As stated previously, observations in the landmark memory are modeled as 2-d Gaussians. We hose this

distribution beause the theory behind merging Gaussian distributions is well-understood. Here, we treat the

distane and bearing estimates as independent distributions. Therefore, we an perform a two-dimensional

merge by doing two independent one-dimensional merges. To merge two 1-d Gaussian with means and

varianes (�

a

; �

2

a

) and (�

b

; �

2

b

), respetively, into a new distribution (�

merged

; �

2

merged

), we use the following

equations:

�

merged

=

�

2

a

�

b

+ �

2

b

�

a

�

2

a

+ �

2

b

(30)

�

2

merged

=

�

2

a

�

2

b

�

2

a

+ �

2

b

(31)

These operations are both ommutative and assoiative, so we are free to merge the observations in any

order. For eah landmark with at least one observation entry, we ompute a merged position estimate to be

used for updating the partile probabilities.

8.3.4 Updating Probabilities

Using the set of merged estimates from the landmark memory, we update the probability, p

i

, of eah partile,

i, based on the posterior probability of making these observations assuming that the partile is the orret

pose hypothesis. Here, we use only the bearing measurement of the observation. The distane information

is used at a di�erent stage (see Setion 8.3.6).

Given the partile's position and orientation along with information about the positions of all �xed

landmarks from an internal map, we an alulate the expeted bearing, �

expeted

for eah observed landmark.

38

If the di�erene between the measured and expeted bearings is small, then the partile is likely to be a

good estimate of our urrent position and orientation. If the di�erene is large, the partile is probably a

bad estimate.

The posterior probability for a single observation is estimated by the following equation:

s(�

measured

; �

expeted

) =

�

e

�50!

2

if ! < 1

e

�50(2�!)

2

otherwise

(32)

where ! =

j�

measured

��

expeted

j

�

. The probability, p, of a partile is just the produt of these probabilities:

p =

Y

�

measured

s(�

measured

; �

expeted

) (33)

However, the partile probability is not simply set to this new value. To prevent oasionally poor observa-

tions from hanging the estimate too dramatially, we plae a threshold on how muh a probability estimate

an hange in a single yle. Therefore, the new probability of a partile is alulated by the following

equation:

p

new

=

8

<

:

p

old

+ 0:1 if p > p

old

+ 0:1

p

old

� 0:05 if p < p

old

� 0:05

p otherwise

(34)

8.3.5 Resampling

One the partile probabilities have been updated, the partiles are resampled to move a higher density of

partiles loser to the most likely pose estimates. To do this, we opy partiles from an old partile list

to a new partile list in proportion to their probabilities. Higher probability partiles are dupliated and

lower probability partiles are thrown out. The resampling is performed suh that the new partiles list will

ontain about 90 partiles. For a given partile, i, in the old list, the number of times that it will appear in

the new list is given by the following equation:

#

i

=

$

1

P

j

p

j

90p

i

%

(35)

After opying over the old partiles, triangulation estimates made from ombinations of two or three beaons

are added until the list ontains 100 partiles. Eah of these partiles are given a probability based on the

unertainty of the observations used in the alulation. Our methods for triangulating the robot's position

are disussed in the following two setions.

8.3.6 Two Beaon Triangulation

In this approah, we use both the distane and angle estimates of the beaons, provided by high level

vision, to determine the position and orientation of the robot in the global referene frame. The inlusion

of beaon distane estimates (in addition to the angle that the beaon is estimated to make with the robot)

in loalization does produe robot position estimates that are more error prone than the estimates obtained

using the angle information alone (i.e. three beaon triangulation, see Setion 8.3.7). But we found that when

the robot position estimates obtained using this tehnique are used as seed values in partile �ltering (with

an appropriate probability value) in addition to the estimates obtained using three beaon triangulation, the

results obtained are more aurate than those with just the three beaon estimates as the seed values.

Given two beaon distanes and bearings with respet to the robot's loal oordinate frame, we an draw

two irles, one around eah of the beaons with radius equal to the distane (estimated) of the beaon from

the robot. The irles interset at two points (or none when the estimates are bad in whih ase they are

not used in alulations), one of them being the orret estimate of the robot's position (see Figure 8).

We �rst use the estimated distanes from the robot to the beaons to determine the robot's position with

respet to a loal frame with the x-axis along the line joining the two beaons. This is then onverted to

39

 Beacon 1

 Beacon 2

 (x_b1,y_b1)

 (x_b2,y_b2)

y

x

d2

d1

 D
which is eliminated using
additional constraints.

Location of the

associated
variances.

robot and the Alternative location

Figure 8: Loalization using two beaons.

the global referene frame using the known geometry of the �eld. The global orientation of the robot is then

determined using the robot's alulated position and estimated distanes and angles to the beaons. We

atually alulate both possible robot poses (position and orientation) but then eliminate one of them using

onstraints (for example, we hek if the position is on the �eld). Then, we need to determine the varianes

in the estimated pose. To do so we basially �nd the partial derivatives of the expressions for pose with

respet to the variables in the system. We do this starting from the �nal expression and move bakwards to

the initial expressions so that we have the \hange" in pose expressed in terms of the hange in the distane

and bearing estimates of the beaons/markers (known values), thereby obtaining the variane estimates.

8.3.7 Three Beaon Triangulation

The image of a distant landmark an be quite small with respet to the size of an image pixel. This an result

in a lak of auray in the distane estimates, but it does not detrat from the angle estimates. Beause of

this, it is espeially desirable to be able to estimate the Aibo's loation using only angle information from

the landmarks. This method eliminates the inauray in the distane estimates, but it has the disadvantage

of requiring knowledge about three landmarks to be appliable.

The di�erene between the horizontal angles of any two landmarks, ombined with the atual positions

40

X

Y

A B

C

This circle arc is the
locus of points P such
that angle BPC is the
observed angle between
beacons B and C.

This arc is the set of points
determined by angle APB. The intersection

of the two arcs
is our estimate
of the AIBO’s
actual location,
shown here with
its variance ellipse.

P

Figure 9: Three Beaon Loalization. The horizontal angles between beaons A, B, and C are used to

onstrut two irle ars. Their intersetion is the three-beaon estimate of the Aibo's loation.

of those landmarks on the �eld, yields a irle ar of possible loations for the Aibo. Three landmarks yield

two irle ars (atually three, but the third is always redundant), whose intersetion is our position estimate

aording to this method (Figure 9). The robot's orientation an then be determined from its position and

the horizontal angle of any landmark.

8.3.8 Random Movement

In the �nal update step, the partiles are moved loally in a random fashion. Partiles with higher prob-

abilities are moved less. This proess performs a probabilisti searh over nearby hypotheses. The update

alulation is summarized as follows:

x

0

= x+ 100mm � (1� p

0

) � rand[�1; 1℄ (36)

y

0

= y + 100mm � (1� p

0

) � rand[�1; 1℄ (37)

�

0

= � + 30

o

� (1� p

0

) � rand[�1; 1℄ (38)

41

Partiles an be moved up to 100mm in x and y and rotated up to 30

o

. These values were hosen without

experimentation.

8.4 Pose Estimation

The �nal stage in the loalization proess is �nding a pose estimate from the partile set. This estimate is

omputed in two steps: �nding the largest luster of partiles and averaging the partiles within that luster.

To �nd the largest luster, we divide the spae of possible x,y,� values into 10� 10� 10 ells. We then

searh through all possible 2� 2� 2 groups of adjaent ells to �nd the group with the most partiles. The

x,y,� values for eah partile in the group are then averaged aording to the following equation:

pose =

*

1

m

m

X

i=1

x

i

;

1

m

m

X

i=1

y

i

; atan2

m

X

i=1

sin(�

i

);

m

X

i=1

os(�

i

)

!+

(39)

where m is the number of partiles in the group and < x

i

; y

i

; �

i

> is the pose of partile i. Notie that the

� values annot simply be averaged beause angle values wrap around.

Breaking the values into 10�10�10 ells and searhing the 2�2�2 groups is an admittedly sup-optimal

approah in that it risks missing onentrations of partiles that span the boundaries of 3 adjaent ells.

We leave more prinipled approahes to future work, but found that this method was straightforward to

implement and it worked well in pratie.

In addition to the pose estimate, the robot's behavior is also dependent upon its ertainty in that estimate.

We alulate our ertainty as the density of partile probability in the largest luster:

ertainty =

1

n

m

X

i=1

p

i

(40)

where n is the total number of partiles and p

i

is the probability of partile i. Based on this ertainty

value, the robot an deide whether to perform a loalization-dependent skill (e.g. shot on goal) or take an

information-gathering ation (i.e. searh for landmarks).

9 Communiation

Colletive deision making is an essential aspet of a multiagent domain suh as robot soer. The robots

thus need the ability to share information among themselves. In this setion we disuss the methodologies

we adopted to enable ommuniation and the various stages of development of the resulting ommuniation

module.

9.1 Initial Robot-to-Robot Communiation

Our initial goal was to understand the apabilities and limitations of the wireless ommuniation hannel

between the various robots. Although the rules required us to use TCPGateway for ommuniation during

the games, we wanted to examine other options that might be useful during non-game situations.

We reated a simple server and a lient that used the User Datagram Protool (UDP). We hose UDP

beause it typially provides greater bandwidth than the alternative, TCP. Our intent was to determine how

quikly we ould transfer data between robots and to simply get used to writing appliations that would

allow the robots to ommuniate.

The �rst server that we reated generated a few bytes of data and tried to broadast it to a lient. The

lient program simply gathered this data as it reeived it. We ran the server and the lient on two di�erent

robots and monitored their ations by telnetting into them.

One that worked, we extended our ommuniation modules to interfae with the robot's mehanial

parts. The next server that we reated aptured the joint angles of the robot and broadast them to the

42

lient. The lient gathered the data and set its own joint positions aordingly. Thus, when we moved

the legs of the server robot, the lient robot would move it's legs by the same amount, thus ating as a

master-slave (puppet) interfae.

As we beame familiar with the networking interfaes of the robot, we ontinued to explore the various

uses of ommuniation. We streamed images from the robot's amera to a PC with both UDP and TCP,

reated a hierarhy of single-master, multiple-slaves that enabled one robot to \lead" a team of robots, and

oded a remote-ontrol program that we ould use to ontrol the Aibo from a PC. All of these experiments

provided valuable feedbak that we later used when reating both our oÆial robot-to-robot ommuniation

module (desribed below) and UT Assist (Setion 14).

9.2 TCP Gateway

One we were familiar with the strutures that the robots use to ommuniate, we began implementing

a ommuniation module. TCPGateway (the required interfae for oÆial robot-to-robot ommuniation

during games) abstrated away most of the low-level networking, providing a standard Open-R interfae in

its plae. The most diÆult part of getting TCPGateway working was understanding the organization of

the on�guration �les.

The TCPGateway on�guration �les basially insert two network addresses and ports in the middle of

an Open-R subjet/observer relationship. This reates the following situation:

� Instead of sending data diretly to the intended observer, the subjet on the initiating robot sends

data to a TCPGateway observer.

� The TCPGateway module on the initiating robot has a spei� onnetion on a unique port for data

owing in that diretion, and sends the data from the subjet over that onnetion to the PC.

� The PC, whih has been on�gured to map data from one inoming port to one outgoing port, sends

the subjet's data out to the reeiving robot on a spei� port.

� The TCPGateway module on the reeiving robot proesses the data that it reeives on this port and

sends the data to the intended observer.

All of the mappings desribed above were de�ned in two �les on eah robot (CONNECT.CFG and ROBOTGW.CFG)

and in two �les on the PC (CONNECT.CFG and HOSTGW.CFG).

9.3 Message Types

One of the hallenges we faed regarding ommuniation was the possibility that multiple types of messages

would need to be sent. We ould theoretially handle this with a stage in the brain loop that ould read and

distribute messages appropriately. As we proeeded, however, this option beame more and more unwieldy.

Variables and data that would be used in one part of a program would be read and set in another part,

perhaps even in another �le. What we needed was the ability to reate an arbitrary number of di�erent

message types, suh that anywhere in the program, we ould request from the ommuniation system the

next message of that type.

Our �rst implementation kept the same ommuniation stak, but when a request was made, the type

of message was passed as a parameter. The ommuniation system would then searh through the stak for

the next message of that type, remove it from the stak, and return it. This worked �ne, but we quikly

realized that if any one type of message eased to be onsumed, it ould have serious rami�ations in terms

of the time needed to retrieve other types of messages.

To solve this, we implemented an array of ommuniation staks, one for eah type of message. This

gave us a onstant-time feth for the next message of any type. As messages arrived, they were proessed by

their type and plaed into the orret stak. This way, messages related to global maps ould be retrieved

and used in the ode that atually handles the operation of global maps, while messages relating to strategy

hanges ould be handled in a di�erent part of the ode.

43

Brain MovementModule

OVirtualRobotComm

wireless network

Figure 10: A high level view of the main Open-R objets in our agent. The robot sends visual data to

the Brain objet, whih sends movement ommands to the MovementModule objet, whih sends set points

to the PID ontrollers in the robot. The Brain objet also has network onnetions to teammates' Brain

objets, the Roboup game ontroller, and our UT Assist lient (Setion 14). Note that this �gure omits

sensor readings obtained via diret Open-R API alls.

9.4 Queuing Messages

When we �rst tested our new multi-type ommuniation system, we found that some of our messages were

not being reeived. More spei�ally, the �rst message of any brain yle was sent, but any other messages

sent later in that brain yle would be dropped. At �rst we thought it was just a onnetivity issue. However,

when we reversed the order of our messages, we found that all but the �rst were not delivered.

Further investigation found that the TCPGateway objet was not able to proess the messages we were

sending quikly enough. We had enough bandwidth, and our robots were onneted, but TCPGateway was

just too slow to handle all the overhead for eah message. The obvious solution to this was to queue our

messages. Thus, when a request to send a message was made somewhere in the ode, what would atually

happen is that the message would be put into a queue, where it would sit until the end of the brain yle.

At the end of the brain yle, the messages were stithed together into a long byte stream, and then sent

o� to the other robots. This meant that we ould do all of our ommuniation with only one TCPGateway

ommuniation per brain yle, whih ut bak on the total overhead.

10 General Arhiteture

Due to our bottom-up approah, we did not address the issue of general arhiteture until some impor-

tant modules had already taken shape. We had some ode that obbled together our vision and movement

omponents to produe a rudimentary but funtional goal-soring behavior (see Setion 12.1.1). Although

this agent worked, we realized that we would need a more strutured arhiteture to develop a more so-

phistiated agent, partiularly with the number of programmers working onurrently on the projet. The

deision to adopt the arhiteture desribed below did not ome easily, sine we already had something that

worked. Implementing a leaner approah stopped our momentum in the short term and required some team

members to rewrite their ode, but we feel the e�ort proved worthwhile as we ontinued to ombine more

independently-developed modules.

We designed a framework for the modules with the aim of failitating further development. We onsidered

taking advantage of the operating system's inherent distributed nature and giving eah module its own

proess. However, we deided that the task did not require suh a high degree of onurrent omputation,

so we organized our ode into just two separate onurrent objets (Figure 10).

We enapsulated all of the ode implementing low-level movement (Setion 5.2.1) in the MovementMod-

ule objet. This module reeives Open-R messages ditating whih movement to exeute. Available leg

movements inlude loomotion in a partiular diretion, speed, and turning rate; any one of a repertoire of

44

kiks; and getting up from a fallen position. Additionally, the messages may ontain independent diretives

for the head, mouth, and tail. The MovementModule translates these ommands into sequenes of set points,

whih it feeds as messages into the robot's OVirtualRobotComm objet. Note that this ode inhabits its own

Open-R objet preisely so that it an supply a steady stream of ommands to the robot asynhronously with

respet to sensor proessing and deliberation. For further details on the movement module, see Setion 5.2.1.

The Brain objet is responsible for the remainder of the agent's tasks: aepting messages ontaining

amera images from OVirtualRobotComm, ommuniating over the wireless network, and deiding what

movement ommand messages to send to the MovementModule objet. It ontains the remaining modules,

inluding Vision, Fall Detetion, Loalization, and Communiation. These omponents thus exist as C++

objets within a single Open-R objet. The Brain itself does not provide muh organization for the modules

that omprise it. In large part it serves as a ontainer for the modules, whih are free to all eah other's

methods.

From an implementation perspetive, the Brain's primary job is to ativate the appropriate modules at

the appropriate times. Our agent's \main loop" ativates whenever the Brain reeives a new visual image

from OVirtualRobotComm. Other types of inoming data, mostly from the wireless network, reside in

bu�ers until the amera instigates the next Brain yle. Eah amera image triggers the following sequene

of ations from the Brain:

Get Data: The Brain �rst obtains the urrent joint positions and other sensor readings from Open-R. It

stores this data in a plae where modules suh as Fall Detetion an read them. This means that

we ignore the joint positions and sensor readings that OVirtualRobotComm generates between vision

frames.

Proess Data: Now the Brain invokes all those modules onerning interpreting sensor input: Vision,

Loalization, and Fall Detetion. Note that for simpliity's sake even Communiation data waits until

this step, synhronized by inputs from the amera, before being proessed. Generally the end result of

this step is to update the agent's internal representation of its external environment: the global map

(see Setion 11).

At: After the Brain has taken are of sensing, it invokes those modules that implement ating, desribed

in Setions 12 and 13. These modules typially don't diretly aess the data gathered by the Brain.

Instead they query the updated global map.

11 Global Map

Early in the development of our soer playing agent, partiularly before we had funtioning loalization

and ommuniation, we hose our ations using a simple �nite state mahine (see Setion 12). Our sensory

input and feedbak from the Movement Module ditated state transitions, so sensations had a relatively

diret inuene on behavior. However, one we developed the apability to loate our agents and the ball

on the �eld and to ommuniate this information, suh a diret mapping beame impossible. We reated

the global map to satisfy the need for an intermediate level of reasoning. The global map ombines the

outputs of Loalization from Vision and from Communiation into a oherent piture of what is happening

in the game, and it provides methods that interpret this map in meaningful ways to the ode that governs

behavior.

11.1 Maintaining Loation Data

When a robot omputes new information about the loation of any partiular objet on the �eld, it usually

merges the new estimate of position with the urrent estimate of position that is stored in its global map

(see Setion 8.3.3).

As time passes, the error estimate for all of the information in the global map inreases. This degradation

of information is inluded to more aurately model the rapid rate of hange in the state of the game. The

45

idea is to make the degradation smooth to reet the maximum hange that we are ready to allow (i.e. the

hange that we think ould have happened) sine the last update. The approah used here is to estimate a

maximum 'veloity' by whih we assume the objet an move along the x and the y axes. We then use this

veloity to alulate the maximum distane the objet ould have moved along the axes in the time sine the

last update. The estimated hange, �

hange

, is statistially added to the loation's unertainty in aordane

with the formula:

�

updated

=

q

�

2

previous

+ �

2

hange

(41)

For example, if we onsider the modeling of the opponents, we want our estimates of the opponents to be

as aurate as possible and we do not want new estimates to our every frame. We would ideally want to be

able to merge estimates from the urrent frame with those in the previous frame, wherever possible, so that

we an atually map the motion of the opponents. At the same time, we may have spurious detetions every

one in a while and if they are not seen in suessive frames, we want these estimates to disappear quikly.

So for opponents we use an arti�ially high 'veloity' suh as 1500 mm/s (determined by experimentation).

On the other hand we want the estimates of the ball, robot position and those of the teammates to degrade

depending on some 'veloity' that reets their atual motion. So we hoose the veloity for teammate

motion as 300 mm/s (we do not think any team an move any faster than that as yet) and that for the ball

as 1000 to 1500 mm/s beause the ball an move about that fast after a single powerful kik. These values

were all determined experimentally and seem to provide reasonable performane in terms of how we would

like our estimates to be updated.

11.2 Information from Teammates

Eah robot periodially sends information from its global map to eah of its teammates. This transmitted

information inludes:

1. The loation of the robot, along with an error estimate.

2. The loations of any opponents of whih the robot urrently is aware, along with error estimates.

3. The loation of the ball, along with an error estimate.

When robot A reeives teammate position information from robot B, robot A always assumes that B's

estimate of B's position is better than A's estimate of B's position. Therefore, robot A simply replaes it's

old position for B with the new position.

When a robot reeives opponent information from another robot, it updates it's urrent estimate of

opponent loations as desribed in Setion 4.6.

If robot A has seen the ball reently when it reeives a ball position update from robot B, robot A ignores

B's estimate of ball position. If robot A hasn't seen the ball reently, then it merges its urrent estimate of

the ball's position with the position estimate that it reeives from robot B.

The basi idea behind having a global map is to make sharing of information possible so that the team

onsisting of individual agents with limited knowledge of their surroundings an pool the information to

funtion better as a team. The aim is to have ompletely shared knowledge but the extent to whih this

sueeds is dependent upon the ability to ommuniate. Sine the ommuniation (see Setion 9) is not fully

reliable, we have to design a good strategy (Setion 12 desribes our strategy and behaviors) that uses the

available information to the maximum extent possible. Other modules an aess the information in the

GlobalMaps using the aessor funtions (prediates) desribed in the following setion.

11.3 Providing a High Level Interfae

From a high level perspetive, the only data that the global map provides to other modules are the es-

timated positions of the ball and the robots on the �eld, along with degrees of unertainty about these

46

estimates. However, the global map also houses an array of funtions on these data, to prevent di�erent

portions of the behavior ode from repliating ommonly used prediates and high level queries. See Ta-

ble 13 for a omplete list of these funtions, most of whose names are lear indiators of their funtionality.

Note that they range from relatively low level methods that return the position of an individual robot

(getTeamMembers) to relatively high level methods suh as NumOpponentsWithinDistane. They inlude

tatial onsiderations, suh as whether IAmClosestToBall, as well as methods relative to our strategi roles

(see Setion 13.2.1), suh as GetDistaneFromSupporter. Finally, methods suh as AmIInDefensiveZone

and IsDefenderWellLoalized provide a more abstrat interfae to the position estimates.

getID GetDistaneFromDefender InLeftThird

getTeamMembers GetDistaneFromKeeper InCentralThird

getOpponents GetAttakerRelativePosition InRightThird

getBall GetSupporterRelativePosition InTopQuarter

getMyPosition GetDefenderRelativePosition InOwnHalf

adjustRelativeBall GetKeeperRelativePosition IsLower

wellLoalized GetAttakerAbsolutePosition InOwnGoalBox

ballOnField GetSupporterAbsolutePosition AmILeftMost

getBallDistaneFromOurGoal GetDefenderAbsolutePosition AmIRightMost

getRelativeBall GetKeeperAbsolutePosition GetLeftPosAngle

getRelativeOrientation IsAttakerWellLoalized GetRightPosAngle

getRelativeOpponentGoal IsSupporterWellLoalized OpponentsOnLeft

getRelativeOwnGoal IsDefenderWellLoalized OpponentsOnRight

getRelativeOpponents IsKeeperWellLoalized NumOpponentsOnLeft

getRelativeTeamMembers BallInOwnGoalBox NumOpponentsOnRight

GetRelativePositionOf BallInOppGoalBox OnOurSideOfTheField

GetRelativePositionOfTeamRel BallInOurHalf OnLeftSideOfTheField

HeadingToOffPost AmIInDefensiveZone IAmClosestTo

HeadingToDefPost NearOwnGoalBox IAmClosestToBall

GetClosestCorner NumberOfTeamMatesInOpponentHalf NumOpponentsWithinDistane

DistaneToOffPost NumberOfTeamMatesInOwnHalf GetRelativePositionTo

DistaneToDefPost HeadingToOppGoal InZone

GetDefensivePost HeadingToOwnGoal ApproahingZone

GetDistaneFromAttaker HeadingToOppLeftCorner

GetDistaneFromSupporter HeadingToOppRightCorner

Table 13: The prediates that GlobalMap provides.

12 Behaviors

In this setion we desribe the robot's soer-playing behaviors. In our development, we had relatively little

time to fous on behaviors, spending muh more of our time building up the low-level modules suh as

walking, vision, and loalization. As suh, the behaviors we desribe here are far from ideal. We antiipate

overhauling this omponent of our ode base should we partiipate in future ompetitions. Nonetheless, we

present a detailed desription for the sake of ompleteness, and to illustrate what was possible in the time

we had to work.

12.1 Goal Soring

One of the most important skills for a soer-playing robot is the ability to sore, at least on an empty goal.

In this setion we desribe our initial solution that was devised before the loalization module was developed,

47

followed by our eventual behavior that we used at RoboCup 2003.

12.1.1 Initial Solution

One we had the initial movement and vision modules in plae, we were in a position to \lose the loop" by

developing a very basi goal soring behavior. The goal was to test the various modules as they interated

with eah other. Sine neither the loalization module (Setion 8) nor the general arhiteture (Setion 10)

had been implemented by this time, this behavior was entirely reative.

This goal soring behavior, implemented as a Finite State Mahine (FSM), assumes that the robot is

plaed at a point on the �eld suh that the distane between the orange ball and the robot is not more than

one half the length of the �eld (i.e. the ball is at a distane where it an be seen by the robot). A point to

note here is that this onstraint ould have been removed by inorporating a \random walk" sequene into

the behavior. The robot �rst performs a three-layer head san to determine if it an \see" the ball at its

urrent position. If the ball is not in its visual �eld at this stage, the robot starts stra�ng (turning 360

Æ

about its urrent position) in searh of the ball. In either ase, the detetion of a ball in a single visual

frame auses the robot to stop and determine if the ball has atually been seen (noise in the image olor

segmentation an sometime ause false ball detetions in high level vision). One the ball is in sight, the

robot walks towards it by traking the entroid of the ball with its head and moving its body in whatever

diretion the head points to. This walking state ontinues until either the ball is lost from the visual frame

(in whih ase the robot goes bak to searhing for the ball) or the robot reahes a point suÆiently lose

to the ball, as determined by its nek angles at that point. The thresholds in the nek angles are set suh

that the robot stops with the ball right under its head. Next, the robot strafes around the ball with its head

held at 0

Æ

tilt), searhing for the o�ensive goal (blue or yellow depending on whether the robot is on the

red team or the blue team). One the goal is found, the robot heks to ensure that the ball is still under

its nose and then tries to kik the ball into the goal. If the robot �nds that it has lost the ball (it sometimes

pushed it away aidentally while stra�ng), it goes bak to searhing for the ball.

This behavior, despite being extremely rudimentary, helped us understand the issues involved in the

interation/ommuniation between modules. It also served to illustrate the importane of a good arhite-

ture in implementing omplex behaviors. At the time of the Amerian Open, this was the only goal-soring

behavior that we had implemented.

12.1.2 Inorporating Loalization

When loalization ame into plae, we replaed the above behavior using stra�ng and a single kik with a

more omplex behavior involving the hin pinh turn. In the new behavior, the deision about whih kik to

use is made aording to knowledge about where on the �eld the robot is and whether there are opponents

nearby.

Figure 11 summarizes the kiking strategy used when no opponents are deteted nearby. If the robot is

on the o�ensive half of the �eld and is not near any walls, it follows the natural strategy of turning toward

the goal and then kiking the ball. On the quarter of the �eld nearest the o�ensive goal, the front power

kik is used rather than the fall forward kik. This is beause we believe the front power kik to be more

aurate than the fall forward kik, although less powerful.

When the robot is in the defensive half of the �eld, it kiks toward the far same-side orner (that is, if

it is on the left half of the �eld, it kiks toward the o�ensive-half left orner). The reasoning behind this

was that when the ball is in the robot's defensive half, the most important thing is to lear the ball to the

other half of the �eld. Sine other robots are generally more likely to be in the enter of the �eld, a good

strategy for aomplishing this is to kik toward the outside so that the ball will on average be allowed to

travel farther before its path is obstruted.

When the robot is near the wall and faing it, the head kik is typially used.

11

This is hiey beause

11

The exeption to this is when the robot is lose to and diretly faing the bak wall near its defensive goal, a situation

whih ours relatively rarely. In this ase, the yoshi kik is used, beause under these irumstanes it is likely to sueed at

pushing the ball in the orret diretion, and there is also a good hane that it will kik the ball farther than the head kik.

48

corner, do not turn ball in front
of own goal, kick with fall
forward kick or head kick

No turn, or yoshi kickkick with head kick

Chin pinch turn toward far same−side

Chin pinch turn toward
far same−side corner,
do not turn ball in front
of own goal, kick with
head kick or fall foward
kick

Chin pinch turn toward goal,
kick with fall forward kick

kick with front power kick
Chin pinch turn toward goal,

Chin pinch turn toward
goal, kick with head kick
or front power kick

Offensive
Goal

Defensive
Goal

Figure 11: Kiking strategy when no nearby opponents are deteted

49

we want to use the hin pinh turn as little as possible when we are along the wall. The more the robot runs

into the wall while moving, the larger the disrepany beomes between the atual distane traveled and the

information that odometry gives to loalization. Beause the FSM uses loalization to determine when to

swith from hin pinh turning to kiking, the longer the robot uses a hin pinh turn along a wall, the less

likely it is to stop turning at the right time. So, it is typially a better strategy when very near a wall and

faing it to head kik the ball along the wall rather than trying to turn with the ball to an exat angle and

then kik with a more powerful kik.

Another situation where the head kik is used is when we would otherwise need to turn more than 180

degrees with the ball. This situation typially arises when the robot is in the defensive half and needs to

avoid turning in a way that will pass the ball between it and its own goal. A 360-degree hin pinh turn

takes approximately 5 seonds. Thus, given that many of our kiks take a small amount of time to prepare

before hitting the ball away, hin pinh turning for more than 180 degrees arries the danger of putting us

in violation of the 3-seond holding rule. Therefore, in situations where we need to turn through some angle

� > 180 degrees, we instead turn through � � 80 (or 180, if �� 80 > 180) degrees and then head kik in the

appropriate diretion.

If opponents are deteted nearby, the robot simply kiks with the head kik in the diretion of the goal

unless the goal is diretly behind the robot, in whih ase it kiks with the yoshi kik. The reasoning behind

this is the same as the reasoning just desribed underlying the hoie of the head kik near walls.

12.1.3 A Finite State Mahine

Our behaviors are implemented by a Finite State Mahine (FSM), wherein at any time the Aibo is in one of

a �nite number of states. The states orrespond roughly to primitive behaviors, and the transitions between

states depend on input from vision, loalization, the global map, and joint angles. This setion desribes

the FSM underlying our main goal-soring behavior. As we developed our strategy more fully, this beame

the behavior of the attaker (see Setion 13.2.1). The behaviors of the other two roles are disussed in

Setion 13.2.1 as well.

The main goal soring states are listed here. Note that the ations taken in these states are exeuted

through the Movement Interfae, and they are desribed in more detail in Setion 5.2.2.

� Head San For Ball: This is the �rst of a few states designed to �nd the ball. While in this state, the

robot stands in plae sanning the �eld with its head. We use a two-layer head san for this.

� Turning For Ball: This state orresponds to turning in plae with the head in a �xed position (pointing

ahead but tilted down slightly).

� Walking To Unseen Ball: This state is for when the robot does not see the ball itself, but one of its

teammates ommuniates to it the ball's loation. Then the robot tries to walk towards the ball. At

the same time, it sans with its head to try to �nd the ball.

� Walking To Seen Ball: Here we see the ball and are walking towards it. During this state the robot

keeps its head pointed towards the ball and walks in the diretion that its head is pointing. As the

robot approahes the ball, it aptures the ball by lowering its head right before transferring into the

Chin Pinh Turn state.

� Chin Pinh Turn: This state pinhes the ball between the robot's hin and the ground. It then turns

with the ball to fae the diretion it is trying to kik.

� Kiking: While in this state, the robot is kiking the ball.

� Reover From Kik: Here the robot updates its knowledge of where the ball is and branhes into

another state. Both of these proesses are inuened by whih kik has just been performed.

50

� Stopped To See Ball: In this state, the robot is looking for the ball and has seen it, but still does not

have a high enough on�dene level that it is atually the ball (as opposed to a false positive from

vision). To verify that the ball is there, the robot momentarily freezes in plae. When the robot sees

the ball for enough onseutive frames, it moves on to Walking To Seen Ball. If the robot fails to see

the ball, it goes bak to the state it was in last (where it was looking for the ball).

In order to navigate between these states, the FSM relies on a number of helper funtions and variables

that help it make state transition deisions. The most important of these are:

� BallLost: This Boolean variable denotes whether or not we are on�dent that we see the ball. This is

a stiky version of whether or not high level vision is reporting a ball, meaning that if BallLost is true,

it will beome false only if the robot sees the ball (aording to vision) for a number of onseutive

frames. Similarly, a few onseutive frames of not seeing the ball are required for BallLost to beome

true.

� NearBall: This funtion is used when we are walking to the ball. It indiates when we are lose enough

to it to begin apturing the ball with a hin pinh motion. It is determined by a threshold value for

the head's tilt angle.

� DetermineAndSetKik: This funtion is used when transitioning out of Walking To Seen Ball upon

reahing the ball. It determines whether or not a hin pinh turn is neessary, what angle the robot

should turn to with the ball before kiking, and whih kik should be exeuted.

Finally, an overview of the rules that govern how the states transition into one another is given in

Figure 12.

12.2 Goalie

In this setion we detail our initial (pre-loalization) and �nal (RoboCup-2003) goalie behaviors.

12.2.1 Initial Solution

Like the rest of our behaviors, our goalie behavior used an FSM for ontrol. The initial behavior was as

follows: One it started, the �rst thing would be to look around for the goal, go to it, turn around and

stand there, in front of the goal, looking forward to see if it saw the ball. If it saw the ball, it would start

to \trak" it, i.e. keep its eye on the ball and turn in plae if neessary. If the ball got too lose, it would

streth its arms out, hoping to blok the ball (Figure 13).

Closeness to the ball was based on the head tilt angle. Sine we didn't have loalization working properly

at the time, this was the only way to reliably tell distane. The goalie would trak the ball, whih entails

moving the head suh that the ball is in the enter of the �eld of vision (and turning the body in plae if

turning the head isn't enough). Therefore the head would always be pointed towards the ball and the loser

the ball, the larger the tilt angle (Figure 14). The angles for being \lose" were determined by trying various

angles on the �eld.

This simple approah had many problems, some due to its simpliity and some due to inabilities of our

Aibos at a lower behavioral level. For example, traking the ball didn't work fast enough for the Aibo to

reat even to slow shots oming towards it. The ball would just roll by the goalie who would lose sight of it

beause its head wouldn't get moved in time to trak the ball.

The most important problem was the passiveness of our goalie. Judging that we would be dead in the

water if we just waited passively for the ball to slowly roll up to us, we deided to take a more ative

approah. Our revised goalie waited in its goalbox until the ball ame within a safety distane and then it

walked to the ball and attempted to lear it. This approah worked muh better but it also brought along

some new problems to solve:

51

Chin Pinch
Turn

Recover
From KickKicking

Turning
For Ball

Walking To
Seen Ball

Head Scan
For Ball

Walking To
Unseen Ball

desired direction.
Robot is facing Kick is

finished.

Ball was kicked
forwards.

Ball kicked to side
or backwards

DetermineAndSetKick says
Chin Pinch Turn is not necessary.

NearBall is true and
Chin Pinch is executed.

The robot has turned
at least 360 without seeing
the ball, and the Global Map
knows where the ball is.

The Global Map doesn’t
know where the ball is.

Enough time has elapsed
without finding the ball.

BallLost
becomes true.

Ball is seen.

Figure 12: The �nite state mahine that governs the behavior of the attaking robot.

52

Closeness threshold

(a) (b)

Figure 13: First attempt at a goalie: (a) it waits for the ball to get within a loseness threshold and then

(b) strethes its arms out to blok the ball. This approah didn't work well sine ball traking was slow. By

the time the goalie strethed, the ball would be long gone.

Tilt angle

Figure 14: Closeness to ball was based on the how large the head tilt angle was.

53

� How lose should the safety distane be? We don't want the goalie to leave the goal to lear a ball at

mid�eld, but if it waits too long, the opponent with the ball will have too great a hane of shooting

a fast shot into the goal.

� How should the robot lear the ball? If it just strethes as it did before, it won't be pushing the ball

away from itself.

� When and how should it get bak in position? There is often an opponent behind or next to the ball,

so after attempting to lear it, the goalie needs to make sure the ball's not still right in front of it. One

it's leared the ball, what is the quikest way to go bak to position in the goalbox while minimizing

the possibility of being aught unaware of the ball oming bak to the goal?

The �rst method we used for learing the ball was the simple strething out to the sides, whih worked

sometimes but usually didn't lear the ball very far and just left it in plae or pushed it to the side a little.

This motivated us to experiment with di�erent kiking styles. Some kiks we tried were the hest push kik,

the arms together kik, the fall forward kik and the \right (or left) swerve kik." (See Setion 7 for details

of the �rst three kiks.) In the right (left) swerve kik the robot baks up to the right (left) side, raises its

right (left) leg and then quikly brings it diagonally down and towards the inside, somewhat like a karate

hop. This kik was one of our most powerful kiks early in our development proess. However, after we

developed the fall forward kik, we experimented with using di�erent kiks in di�erent situations (e.g. use

the fall forward kik when the ball is right in front and the swerve kik when it is o� to the side). Eventually

we deided that the best approah was to always use the fall forward kik.

When the goalie tries to lear the ball, frequently the ball stays where it is or moves a very small amount.

This an be due to not exeuting the kik perfetly or, more often, the fat that there is an opponent robot

right behind the ball, keeping it from rolling away. To make sure the ball is leared and it is safe to go

bak to the waiting position inside the goalbox, the goalie heked to see if the ball was right under it after

kiking. If it saw the ball there it would try to kik again. This was repeated until the ball was suessfully

leared.

Going bak to the goal after learing was one of the trikiest parts beause we didn't have any loalization

initially. All the goalie knew was to reognize the ball and the goal. We didn't want the goalie to just turn

bak, look for the goal, walk bak to it and turn around to fae the �eld. That would mean spending a long

time without looking at the ball, whih might give our opponents a hane to sore sine the ball might not

have been leared very far away (even though we make sure its not right under our head). The solution

to this was to walk bakwards after suessfully learing the ball and at the same time keeping looking for

the ball in ase it appears lose to the robot. This worked quite well and the goalie kept wathing the ball

when it wasn't leared far away, but there was a new problem. When the goalie saw the ball while walking

bakwards, it would return to traking and go out to lear the ball if it got lose enough. After going out to

lear and walking bak a few times, the error in position would get large and the goalie would start drifting

away from its home position. To ounter this, we hanged the behavior so the goalie would turn around and

go bak to its home position after walking out for a long time (\a long time" being hosen arbitrarily based

on experiments on the �eld).

There are many ways in whih the apabilities of the goalie an be improved. Adding loalization was

done after the Amerian Open, and is desribed in the next subsetion. Getting better ball traking ability

with faster reation to fast-moving balls (suh as shots) is de�nitely needed and would improve goalkeeping

behavior substantially.

12.2.2 Inorporating Loalization

One our goalie had the ability to determine its position on the �eld, our primary strategy shifted to staying

between the ball and the goal. Given the size of the goalie with respet to the goal, we adopted a fairly

onservative strategy that kept the goalie in the goal most of the time.

Whenever the goalie saw the ball, it oriented itself suh that it was pointed at the ball and situated

between the ball and the goal. If the ball ame within a ertain distane of the goal, the goalie advaned

54

towards the ball and attempted to lear it. After attempting to lear the ball, the goalie retreated bak into

the goal, walking bakwards and looking for the ball. Any time the goalie saw the ball in a non-threatening

position, it oriented itself towards the ball and ontinued its urrent ourse of ation.

Whenever the ball was in view, the goalie kept a history of ball positions and time estimates. This

history allowed the goalie to approximate the veloity of the ball, whih was useful in deiding when the

goalie should \streth out" to blok a shot on the goal.

One interesting dilemma we enountered onerned the tradeo� between looking at the ball and looking

around for landmarks. It seemed very possible that, given the goalie's size, if it ould just stay between the

ball and the goal it ould to a fairly good job of preventing goals. However, this strategy depended on the

goalie both being able to keep trak of it's own position and the ball's position. When we programmed the

goalie to �xate on the ball, it was not able to see enough landmarks to maintain an aurate estimate of

its own position. On the other hand, when the goalie foussed on the beaons in order to stay loalized, it

would often miss seeing the approahing ball. It proved to be very diÆult to strike a balane between these

two opposing fores.

13 Coordination

In this setion we desribe our initial and eventual solutions to oordinating multiple soer-playing robots.

13.1 Dibs

Our �rst e�orts to make the players ooperate resulted diretly from our attempts to play games with 8

players. Every game would wind up with six robots rowded around the ball, wrestling for ontrol. At this

point, we only had 2 weeks before our �rst ompetition, and thus needed a solution that did not depend on

loalization, whih was not yet funtional. Our solution was a proess we alled Dibs.

13.1.1 Relevant Data

In developing Dibs, we tried to fous on determining both what data were available to us, and of that data,

whih were relevant. Beause we did not have a oherent set of global maps at this point, any information

from other robots would have to ome diretly into the Dibs system. As we reated the system, it beame

more and more lear that the only thing we ared about was how far from the ball eah robot was. Our �rst

attempt simply transmitted the ball distane to every other robot. Eah robot would then only go to the

ball if its distane estimate was lower than that of every other robot.

13.1.2 Thrashing

Unfortunately, this �rst attempt did not work so well. First of all, the robots' pereption of their distane to

the ball was very heavily dependent on how muh of the ball they ould see, how the lights were reeting

o� the surfae of the ball, and how muh of the ball was atually lassi�ed as \orange." This means that

estimates of the ball's distane varied wildly from brain yle to brain yle, often by orders of magnitude in

eah diretion. Seondly, even when estimates were fairly stable, a robot ould think that it was the losest

to the ball, start to step, and in the proess move slightly bakward, whih would signal another robot to

go for the ball. The other robot would begin to step, moving slightly bakward at �rst, and the yle would

ontinue ad in�nitum.

13.1.3 Stabilization

To orret these problems, we deided that re-evaluating whih robot should go to the ball in eah brain yle

was too muh. Evaluating that frequently didn't give a robot the hane to atually step forward (this was

before our walk was fully developed as well), so that its estimate of ball distane ould derease. However,

we ouldn't just take measurements every n brain yles and throw away all the other information | we

55

were strapped for information as it was, and we didn't want one noisy measurement to negatively a�et the

next n brain yles of play. Our solution was to take an average of the measurements over a period of time,

and instead only transmit them every n brain yles.

13.1.4 Taking the Average

Beause the vision is somewhat noisy (i.e. the robot sometimes sees the ball when it is not there, and

sometimes doesn't see it when it is there), it didn't make sense just to take the raw mean of the estimates

over the period of n brain yles. We deided that unless the robot saw the ball for at least

n

2

yles in eah

period, it would report an essentially in�nite distane to the ball. If it did see the ball enough, it would

take all the non-in�nite estimates in that \transmit yle", disard some �xed number of highest and lowest

values (an attempt to lean up some of the noise), and then transmit the mean of the remaining values.

13.1.5 Aging

To prevent deadlok we introdued an aging system into Dibs. Originally, if a robot had transmitted a very

low estimate of distane to the ball, and then rashed or was removed from play, any other robots would just

remain wathing the ball, beause they would still have the other robot's estimate in their memory. Thus,

at the end of eah transmit yle, we inremented the age of eah other robot's estimate. When the age

reahed a pre-determined uto� (10 in our ase), the estimate was disarded and set to the maximum value.

In this way, other robots ould then resume attaking the ball.

13.1.6 Calling the Ball

Another problem we ran into involved the \strafe" state. One a robot had established \Dibs" on the ball,

it would walk towards the ball while the other robots wathed the ball losely. When the robot reahed the

ball, however, it would look up, in order to �nd the goal. While it was looking up, its ball estimates would

all go to the maximum value, and other robots would resume attaking the ball. More often than not, this

would result in a robot stra�ng to �nd the goal, while another robot of ours would ome up and take the

ball right out from under the nose of the �rst. Next, the seond robot would start to strafe, and a large

tangle of robots would result. To prevent this, we added funtions alled \allBall" and \relinquishBall."

These funtions merely set ags that made the robot start lying about its distane to the ball and stop lying,

respetively. When lying about its distane to the ball, the robot would always report zero as its distane

estimate. This way, whenever the robot entered the stra�ng state, it ould e�etively let the other robots

know that even though it wasn't seeing the ball, they shouldn't go after it. The robot would then relinquish

the ball at the beginning of most states, inluding when it had lost the ball and when it had just �nished

kiking the ball.

13.1.7 Support Distane

The system desribed so far worked pretty well in that it prevented more than one robot from going to the

ball at one. However that was all it did. One robot might be going to the ball, but all the others would

just stare at the ball, regardless of how far away they were. We determined that this was onsiderably

sub-optimal, and that even if a robot is dribbling the ball down the �eld toward the enemy goal, if it were to

lose the ball, it would be nie to have another robot nearby to reover, if possible. Thus we introdued the

onept of a \support distane." Originally set at half a meter, and then tuned to approximately a meter,

the support distane was how lose the robot would have to be to the ball before its lak of Dibs would

prevent it from advaning further. While we only enjoyed limited overall suess using the support distane

tehnique, it was a marked improvement over ordinary Dibs.

56

13.1.8 Phasing out Dibs

One loalization was brought online, the need for multiple types of transmissions (whih Dibs did not

respet) and the desire to use loalization data ditated a phasing out of Dibs. Beause Dibs was so arefully

tuned to the robots' playing style, ooperation atually worsened for quite a while before it improved after

phasing out Dibs. However, as with many things, it needed to get worse before it ould get better.

13.2 Final Strategy

Here we desribe the oordination strategy developed during the last week or so before RoboCup 2003. In

partiular, it takes advantage of both loalization and global maps.

13.2.1 Roles

Our strategy uses a dynami system of roles to oordinate the robots. In this system, eah robot has one

of three roles: attaker, supporter, and defender. The goalie does not partiipate in the role system. This

setion gives an overview of the ideas behind the roles. The following setions desribe in more detail the

supporter's and defender's behaviors and under what onditions the roles hange.

The roles are dynamially assigned, in that at the start of eah Brain yle, a given robot reevaluates

its role based on its urrent role, its global map information, and other strategi information ommuniated

to it by its teammates. The default alloation of roles is for there to be one defender and two attakers.

Under ertain irumstanes an attaker an beome a supporter, but after some time it hanges bak into

an attaker. It is also possible for the defender to swith roles with an attaker. There should always be

exatly one defender and at least one attaker.

The di�erenes between the roles manifest themselves in the robots' behaviors. Here is a summary of

the di�erenes between the behaviors e�eted by the di�erent roles. The attaker's behavior is desribed in

more detail in Setion 12.1, and the supporter and defender behaviors are desribed more fully below.

� An attaker robot fouses exlusively on goal-soring. That is, it tries to �nd the ball, move to it, and

kik it towards the goal.

� The supporter's ations are based on a ouple of goals. One is to stay out of the way of the attaker.

This is based on the idea that one robot an sore by itself more e�etively than two robots both trying

to sore at the same time. Another goal is to be well plaed so that if the attaker shoots the ball

and it riohets o� the goalie or a wall the supporter an then beome the attaker and ontinue the

attak.

� Our defender stays on the defensive half of the �eld at all times. Its job is to wait for the ball to be on

its half and then go to the ball and lear it bak to the o�ensive side of the �eld.

13.2.2 Supporter Behavior

The supporter uses an omnidiretional walk to try to simultaneously fae the ball and move to a supporting

post. If it sees the ball, it keeps its head pointing towards the ball and tries to point its body in the same

diretion as its head. If it doesn't see the ball, it tries to turn towards its global map loation of the ball

and sans with its head to try to �nd it. It is very rare for there to be a supporter that has no idea where

the ball is (i.e. while no robot sees the ball).

The loation of the supporting post is a funtion of the position of the ball. For this we use a team-entri

oordinate system where the edge of the �eld inluding the defensive goal line is the positive x-axis, the left

edge of the �eld is the positive y-axis, and the units are millimeters. If the oordinates of the ball are (x; y),

then the supporting post, (S

x

; S

y

), is given by

S

x

=

�

1150 if x > 1450

1750 if x � 1450

(42)

57

and

S

y

= min

�

y + 4200

2

; 3800

�

: (43)

13.2.3 Defender Behavior

The role of a defender in robot soer is not muh di�erent from that in real soer | to prevent the

opponents from moving the ball anywhere near the goal it is defending and to try and kik the ball, when

in its own half, towards a team member in the other half. We deided to go for a very onservative defender

suh that there is always one robot in our half defending the goal. At the same time we wanted to ensure

that under onditions where the defender is in a better position to funtion as the attaker, there is smooth

swithing of roles between the robots.

When a robot is assigned the defender role, its �rst ation is to walk within a ertain distane (approx.

200mm) of a prede�ned defensive post that is roughly the enter of the defensive half of the �eld. One

it gets within this distane of the defensive post, it either turns suh that it faes the ball whih is within

its �eld of vision or it turns to fae the point where it thinks the ball is based on the result of merging the

estimates from other teammates in its global map (see Setion 11). If it annot see the ball and also does not

reeive any ommuniation regarding the ball from other teammates (a rare ourrene), it starts searhing

for the ball one it gets to the defensive post. Even while it is walking to this post, if it sees the ball and

�nds, on the basis of its urrent world knowledge, that it is the losest to the ball, it starts walking to the

ball. One it gets to the ball it tries to kik the ball away from the defensive zone (the bottom three-fourths

of the half of the �eld that it is defending). For the defender, we use a ombination of the hin-pinh turn

and the fall forward kik (see Setion 7), as it is the most powerful kik we have. While kiking, the defender

always tries to angle the kik away from its own goal and towards one of the orners of the opposition.

This strategy allows us to lear the ball in most instanes and even takes it a long way into the other half

thereby giving the attaker(s) (or attaker and supporter) a better hane of soring a goal. Aording to

the rules of the ompetition, none of the team members an enter the penalty box around their own goal. To

aommodate this in the defender and in the other team members exluding the goalkeeper, we add a hek

that prevents the robot from entering the goal box and a \bu�er" region around it. If the ball is within this

region, the robot just traks the ball and lets the goalkeeper take are of learing the ball.

13.2.4 Dynami Role Assignment

Our role assignment system has three main faets. One is a set of general rules that serve to maintain the

status quo of there being exatly one defender and at least one attaker. Next are the rules that determine

when one of the two attakers beomes a supporter and then when it swithes bak. The last set of rules

orhestrates timely swithes between the defender and an attaker.

General Rules We label the three robots R

1

, R

2

, and R

3

. Then the following rules inuene R

1

's hoie

of role. (The rules are the same for eah robot; the labels are to distinguish whih robot's role is being

determined presently.)

� The default is for eah robot to keep its urrent role. It will only hange roles if a spei� rule applies.

� If R

1

�nds that it is \alone" in that it has not been reeiving ommuniation from other teammates

for some time, it automatially assumes the role of an attaker.

� In most ases, ommuniation works �ne, and if neither R

2

nor R

3

is a defender, then R

1

will auto-

matially beome (or stay) a defender. This ensures that (under normal onditions) there will always

be at least one defender. Ensuring that there is not more than one defender is taken are of in the

setion on attaker and defender swithing.

58

� If R

1

is a supporter and so is R

2

or R

3

, then R

1

will automatially beome an attaker. This ould

happen aidentally if two supporters simultaneously deide to beome supporters without enough

time in between for the seond one to be aware of the �rst's deision. In this ase this rule ensures

that at least one of the supporters will immediately go bak to being an attaker.

Attakers and Supporters A number of onsiderations inuene our mehanism for swithing between

attaker and supporter. One suh onsideration is that we want to prevent a robot from hanging roles twie

with very little time in between. This is beause a robot that keeps hanging roles very frequently behaves

in a sattered manner and is unable to aomplish anything. To enfore this, we made the roles somewhat

stiky. That is, for an attaker or supporter, there is an amount of time suh that one the robot enters that

role, it is unable to leave it until that muh time has passed. Presently, the amount of time for an attaker

is 2:5 seonds, and for a supporter it is 2 seonds. Notably, stikiness an easily be in onit with the

general rules listed above. In these ases we give stikiness the highest priority. We also onsidered giving

the general rules highest priority, and it is still not ompletely lear to us whih system is better.

An important measure that we use to evaluate a robot's utility as an attaker is its kik time. This is

an estimate of the amount of time it will take the robot in question to walk up to the ball, turn it towards

the goal, and kik. Eah robot alulates its own kik time and ommuniates it to the other robots as part

of their ommuniation of strategi information. The estimated amount of time to get to the ball is the

estimated distane to the ball divided by the forward speed. The time to turn with the ball is determined by

alulating the angle that the ball will have to be turned and dividing by the speed of the hin-pinh turn.

Consider the ase where there are two attakers, A

1

and A

2

. One A

1

's period of stikiness has expired,

it will beome a supporter preisely when all of the following onditions are met:

� A

1

and A

2

both see the ball. This helps to ensure the auray of the other information being used.

� The ball is in the o�ensive half, as well as both robots A

1

and A

2

. Beoming a supporter is only useful

when our team is on the attak.

� A

1

has a higher kik time than A

2

. That is, A

2

is better suited to attak, so A

1

should beome the

supporter.

One we have a supporter, S, and the role is no longer stuk, it will turn bak into an attaker if any of

the following onditions hold:

� S, the ball, or the attaker (A) go bak into the defensive half.

� A and S both see the ball, and S's estimate of its distane from the ball is smaller than A's.

� A doesn't see the ball, and S's estimate of the ball's distane from it is less than some onstant

(presently 300 mm).

� S has been a supporter for longer than some onstant amount of time (presently 12 seonds).

Attaker and Defender Swithing The following set of rules is used to allow the defender and an

attaker to swith roles under appropriate irumstanes.

� If a defender reeives the information that there is another defender, it heks, using the global map

data on the robots' distanes to the ball, if it is a \better" defender (the one farthest from the ball).

If so, it stays a defender. If not, it beomes an attaker.

� If a defender �nds that there is no other defender, it still heks to see if the onditions are suitable for

it to beome an attaker. Here we test to see if the robot is losest to the ball and is in the setion of

the �eld that is on the top half on its side of the �eld. If it is, it sends a request to the attaker, asking

to swith roles with it. Then, instead of beoming an attaker immediately, it waits for the attaker to

59

reeive the request. One this happens, we end up with more than one defender in the team (see the

rule mentioned below), and this is resolved using the ondition mentioned above. More information on

message types and ommuniation an be found in Setion 9.

� When an attaker reeives a request from a defender to swith roles, it automatially aepts. It

does not need to partiipate in the deision making proess beause the defender had aess to the

same information as it did (as a result of the global maps) when it deided to swith. The attaker

ommuniates its aeptane by simply beoming a defender. This is suÆient beause the robots

always ommuniate their roles to all of their teammates.

As mentioned above, our role system was developed quite hastily in the last week or so before ompetition.

However, we feel that the system performs quite appropriately during games. The attaker/defender swithes

normally our where they seem intuitively reasonable. The two attakers (with one beoming a supporter

periodially), trying to sore a goal, frequently look like a well organized pair of teammates. Nonetheless,

there are ertainly some instanes during the games where we an point to situations where a role hange

happened at an inopportune time, or where it seems like they should \know better" than to do what they

just did. Finding viable solutions to problems like this an be strikingly diÆult. We look forward to making

further progress on these problems and to improving the ooperation between the robots.

14 UT Assist

During the ourse of our development, we developed a valuable tool to help us debug our robot behaviors

and modules. This tool, whih we alled UT Assist, allowed us to experiene the world from the perspetive

of our Aibos and monitor their internal states in real-time.

14.1 General Arhiteture

UT Assist onsists of two piees: a lient and a server. The funtion of the lient software, whih is

programmed in C++ and runs on an Aibo, is to queue and send data to the server. The server, whih

is programmed in Java and runs on a remote omputer, is primarily onerned with olleting, displaying,

and saving the data that it reeives. We hose Java for the server beause it put us on a relatively quik

development yle and gave us aess to a rih library of pre-existing ode. In partiular, the ease with whih

Java handles networking and graphis made it an obvious andidate for this projet.

Multiple lients an onnet to one server. It is possible for more than one server to be ative at

one, provided that it does not listen on a port that is already taken by another servie. All lient-server

ommuniation takes plae via TCP. The lient software uses the default Open-R TCP endpoint interfae,

and the server software uses TCP networking lasses desribed in the Java 2 API spei�ation.

14.1.1 Typial Usage

During eah Brain yle on the Aibo, many di�erent piees of ode an attempt to send data messages to

the server. If the lient is not already sending data to the server, it will aept eah request and plae the

spei�ed data into a queue. If the lient is busy sending data, it will rejet the request to send data. At

the end of eah Brain yle, if the lient has some data in its queue, it will divide the data into �xed-length

pakets and start sending the data to the server. This method of proessing data ensures that only data

from the most reent Brain yle will be sent to the server and avoids a \baklog" situation, in whih the

speed at whih data is queued exeeds the speed at whih it an be delivered to the server.

Eah message that enters the queue in the lient is uniquely identi�ed by a one-byte ID �eld. From the

perspetive of the lient, eah message it reeives is simply a group of bytes assoiated with a unique ID.

None of the paket proessing that the lient performs upon the queue of messages depends on the atual

data in the messages, whih allows users to add new types of data messages without modifying the lient.

60

(a) (b) () (d)

Figure 15: Several examples of visual data displayed in UT Assist. Part (a) ontains a low-resolution

image with vision objets overlayed on top. Part (b) shows a olor segmented image. Part () ontains a

low-resolution image, and (d) ontains a high-resolution image.

When the data from the lient reahes the server, it is reassembled into a queue of messages. Eah

message is then passed to the appropriate handler for that type of message. These di�erent message types

are disussed in the following setion.

14.2 Debugging Data

One use of UT Assist is to extrat debugging data from the Aibos. The following setions desribe the

di�erent types of data that an be viewed.

14.2.1 Visual Output

There are several di�erent types of visual data that UT Assist an display, eah of whih allows the user to

examine a di�erent aspet of the Aibo's vision system. The di�erent types of data are desribed as follows

(see Figure 15 for examples):

� Low and high resolution images { UT Assist an transfer full resolution images from the Aibo's amera

(76,032 bytes in size) as well as smaller versions of the same image (4,752 bytes) whih lak the larity

of the high-resolution images but an be sent at a muh faster rate. The small images an typially be

transmitted and displayed in fra13 of a seond, whereas the large images take 3 to 4 seonds to be

displayed.

� Color segmented images { The Aibo an send olor segmented images to UT Assist. The olor seg-

mented images are the high-resolution images where eah pixel has been lassi�ed by the Aibo's low-

level vision as one of several disrete olors (for more details, see Setion 4.2).

� Vision objets { UT Assist an also display bounding boxes around objets that the Aibo's high-level

vision software has reognized. UT Assist an overlay these bounding boxes on top of regular amera

images, a tehnique that is useful for identifying possible bugs in the vision system.

14.2.2 Loalization Output

UT Assist an also parse several types of debugging output whih allow the user to examine aspets of the

Aibo's internal model of the world. These data an be desribed as follows (see Figure 16 for an example):

� Partile �ltering { UT Assist an display the distribution of position/orientation partiles that the

Aibos use to determine their position (for more on partiles, see Setion 8.1).

61

Figure 16: An overhead view of the �eld, as displayed on UT Assist. The Aibo's position and orientation

are denoted by the small blue triangle. The white dots on the �eld represent the partile distribution that

the Aibo uses to determine it's position and orientation. Also shown are an estimate of error in the position

(the blue oval), data from the IR sensor (the red line), and an estimate of the ball's position (the orange

irle).

� Visible beaons { The Aibo an also send data about whih beaons it urrently sees, whih an be

displayed on the overhead map so that the user an quikly determine whih beaons the Aibo an

and annot see.

� Position information { UT Assist an also display an Aibo's �nal estimate of position and orientation

and the unertainty assoiated with that estimate.

� Other objets { UT Assist an display an Aibo's estimate of where the ball urrently is, as well as the

loation of any opponents that it sees.

14.2.3 Misellaneous Output

� Infrared data { A small bar an be displayed in front of the Aibo's nose that indiates the urrent

value of the infrared sensor.

� Text desriptions of state { Textual desriptions of the Aibo's urrent state and role an also be

displayed (for more on roles, see Setion 13.2.1).

14.3 Vision Calibration

One of the hief bene�ts of UT Assist is the relatively seamless manner in whih it an be used to alibrate

the low-level vision of the Aibos. This proess an be desribed in the following manner: (see Figure 17 for

examples)

1. The user requests an image from an Aibo. The server sends this request to the lient on the spei�ed

Aibo.

62

(a) (b)

() (d)

Figure 17: Color alibration for the Aibo using UT Assist. Part (a) shows the initial image as viewed in the

UT Assist Image Segmenter. In (b), the user has started to lassify (label) image pixels by painting various

olors on them. Part () depits the image after it has been lassi�ed, and (d) shows the distribution of

olors in the 3-dimensional YCbCr spae, i.e. the �nal Master Cube.

63

2. The vision module in the Brain of that Aibo responds by sending with a high-resolution image bak

over the network to the server.

3. The image is displayed on the user's sreen, and the user is allowed to \paint" various olors on the

image (i.e. label the pixels on the image). The olors and the underlying pixels of the image are paired

and saved so that they an later be used to ompute the Intermediate (IM) ubes for the Aibo.

4. The user repeats this proess, from step one, until she/he is satis�ed with the resulting olor alibration.

Then the Master (M) ube is generated, loaded on the memory stik, and used by the Aibo for

subsequent image lassi�ation.

While painting the images, the user an view what the image would look like had it been proessed

with the urrent olor ube (NNr ube) using the Nearest Neighbor (NNr) rule. The user an also preview

false-3D graphs of the YCbCr olor spae for eah olor. These represent the IM olor ubes. The user an

also see the M ube, generated by applying a NNr sheme on the NNr ube obtained by merging the IM

ubes. For more details on olor segmentation, see Setion 4.2.

15 The Competitions

In the RoboCup initiative, periodi ompetitions reate �xed deadlines that serve as important motivators.

Our initial goal was to have a team ready to enter in the First Amerian Open Competition. We then

proeeded to qualify for and enter the Seventh International RoboCup Competition. This setion desribes

our results and experienes at those events.

15.1 Amerian Open

The First Amerian Open RoboCup Competition was held in Pittsburgh, PA from April 30th to May 4th,

2003. Eight teams ompeted in the four-legged league, four of whih, inluding us, were teams ompeting

in a four-legged league RoboCup event for the �rst time. The eight teams were divided into two groups of

four for a round robin ompetition to determine the top two teams whih would advane to the semi-�nals.

The teams in our group were from the University of Pennsylvania, Georgia Institute of Tehnology (two

veteran teams), and Te de Monterrey, Mexio (another new team). At this ompetition, we used our initial

behaviors for both the goal soring player (see Setion 12.1.1) and the goalie (see Setion 12.2.1). The results

of our three games are shown in Table 14.

Opponent Sore (us-them) Notes

Monterrey 1{1 Lost the penalty shootout 1{2

Penn 0{6

Georgia Teh 0{2

Table 14: The sores of our 3 games at the Amerian Open.

On the day before the ompetition, we arranged for a pratie game against the Metrobots, a new team

from three shools in the New York Metropolitan area: Columbia, Rutgers, and Brooklyn College. The

game was meant as an initial test of our behaviors. In partiular, we used SplineWalk in the �rst half and

ParamWalk in the seond half. After going down 3{0 in the �rst half, the game ended 4{1 in favor of the

Metrobots.

Playing in this pratie game was very valuable to us. Immediately afterwards, we drew up the following

priority list:

1. Don't see the ball o� the �eld. There was a parquet oor and wooden doors in the room. The robot

appeared to often see them as orange and try to walk o� the �eld.

64

2. Get loalization into the goalie. At the time, we were using the initial goalie solution, and the goalie

often found itself stuk in the orner.

3. Start with a set play. When we had the kiko�, the other team often got to the ball before we were ready

to kik it. We deided to try reexively kiking the ball and having another robot walk immediately

to the target of the kik.

4. Get a sideways head kik in. Whereas our initial goal soring behavior strafed around the ball to look

for the goal, the other team's robots often walked to the ball and immediately iked it with their

heads. That provided them with a big advantage.

5. Move faster. Most other teams in the tournament used CMU's walk from their 2002 ode. Those

teams moved almost twie as fast as ours.

6. Kik more reliably and quikly. It was often lear that our robots were making good deisions. However,

their attempted kiks tended to fail or take too long to set up.

Some of these priorities | partiularly the last two | were learly too long term to implement in time for

the ompetition. But they were important lessons.

Overnight, we added some preliminary loalization apabilities to the goalie so that it ould get bak into

the goal more quikly. We also developed an initial set play and made some progress toward kiking more

quikly when the ball was near the goal (though not on the rest of the �eld) by just walking forward when

seeing the orange ball diretly in front of the goal.

Our set play for use on o�ensive kiko�s involved two robots. The �rst one, plaed diretly in front of the

ball, simply moved straight to the ball and kiked it diretly forward | without taking any time to loalize

�rst. We tended to plae the robot suh that it would kik the ball towards an o�ensive orner of the �eld.

The seond robot, whih was plaed near the orresponding enter beaon, reexively walked forwards until

either seeing the ball or timing out after moving for about half a meter.

On defensive kiko�s, our set play was simply to instrut one of the robots to walk forwards as quikly

as possible. We plaed that robot so that it was faing the ball initially.

In the �rst game, we tied Te do Monterrey 1{1 in a largely uneventful game. In the penalty shootout,

we lost 2{1. Though we only attained limited suess, given the time we had to develop our team, we were

quite happy to sore a goal and earn a point in the ompetition (1 point for a shootout loss).

After some network problems for both teams, the 2nd game against Penn ended up as a 6{0 loss. Penn,

the eventual runner up at RoboCup 2003, had a very unique and powerful kik in whih the robot turns

while its arm is stuk out. Despite the lopsided sore, we did observe some positive things. The goalie made

some good plays and suessfully loalized on the y a ouple of times. Our new set play worked a little bit,

too.

Our last game was against Georgia Teh, the eventual runner up of the ompetition, and we only lost

2{0. The goalie looked good again | it was ertainly the player with the most ation overall.

One of the biggest take-home lessons from this ompetition was that although our robots appeared to

make intelligent deisions, they had no hope in the ompetition unless they ould walk and kik as quikly as

the other robots. We briey onsidered moving to the CMU 2002 walking and kiking ode as we proeeded

with our development toward RoboCup 2003. However, in the end we deided to stik with our deision to

reate our entire ode base from srath.

Over the next two months we ontinued developing the ode outside of the lass ontext. Many of the

routines desribed in this tehnial report were developed over the ourse of those two months. In partiular,

we did sueed in reating a faster walk (Setion 5), we got loalization working (Setion 8), we developed

many more kiks (Setion 7), and we ompletely reworked the strategy (Setion 12), all as desribed herein.

During this time we played frequent pratie games with two full teams of robots, whih helped us immensely

with regards to benhmarking our progress and exploring the spae of possible strategies.

By the end of June, we were muh more prepared for RoboCup 2003 than we had been for the Amerian

Open. Of ourse we expeted the ompetition to be tougher as well.

65

15.2 RoboCup 2003

The Seventh International RoboCup Competition was held in Padova, Italy from July 2nd to 9th, 2003.

24 teams ompeted in the four-legged league, eight of whih, inluding us, were teams ompeting at the

international event for the �rst time. The 24 teams were divided into four groups of six for a round robin

ompetition to determine the top two teams whih would advane to the quarter-�nals. The teams in

our group were the German Team from University of Bremen, TU Darmstadt, Humboldt University, and

University of Dortmund, all in Germany; ASURA from Kyushu Institute of Tehnology and Fukuoka Institute

of Tehnology in Japan; UPennalizers from the University of Pennsylvania; Essex Rovers from the University

of Essex in the UK; and UTS Unleashed! from the University of Tehnology at Sydney. Essex ended up

being unable to ompete and dropped out of the ompetition. The results of our four games are shown in

Table 15.

Opponent Sore (us-them)

UTS Unleashed! 1{7

German Team 0{9

UPennalizers 0-6

ASURA 1-4

Table 15: The sores of our four oÆial games at RoboCup.

Like at the Amerian Open, we made sure to arrange some pratie games in Italy. The results are

shown in Table 16. Our �rst test math was against CMU, the defending hampions. We ended up with an

enouraging 2{2 tie, but it was only their �rst test math as well, with some things still learly not working

orretly yet. Overall, we were fairly satis�ed with our performane.

Opponent Sore (us-them)

CMU 2{2

U. Washington 0{1

Team Sweden 3{0

U. Washington 0{4

Metrobots 3{1

Team Upsalla 4{0

Table 16: The sores of our six unoÆial games at RoboCup.

In our �rst \oÆial" pratie math (organized by the league hairs), we played against the University

of Washington team (3rd plae at the Amerian open) and lost 1{0. It was a fairly even game. They sored

with 10 seonds left in the half (the game was just one half). They also had one other lear hane that they

kiked the wrong way. In this game, it beame apparent that we had introdued some bugs while tuning

the ode sine the day before. For example, the fall detetion was no longer working. We also notied that

our goalie often turned around to fae its own goal in order to position itself. It was in that position when

it was sored on. The other notieable problem was that our robots had a blind spot when looking for the

ball: there were times when we should have gotten possession of the ball but did not see it.

Nonetheless, we remained happy with our performane. The role swithing was working well, and our

robots were as fast to the ball in general as any other team's. We had the ball down in UW's end of the

�eld frequently. We just ouldn't get any good shots o�.

We won our 2nd and last \oÆial" pratie game against team Sweden 3-0. They had some problems

with their goalie, so our �rst two goals were essentially on an empty net. We were hoping to test some

hanges to the goalie in this game, but the ball was in their end most of the time, so our goalie didn't get

tested muh.

66

Next, we played another informal pratie math against the University of Washington team and lost

4{0. This game appeared to be muh worse for us than the previous one against them, so we deided to

undo some of the hanges we had made on site. Although it is always tempting to keep trying to improve

the team at the last minute, it is also risky. This is an important lesson about ompetitions that has been

learned many times and is still often ignored!

In our �rst oÆial game, we played the other new team in our group, UTS Unleashed! and lost 7{1. Our

impression was that the sore was not reetive of the overall play: there wasn't anything notieably wrong

with our ode. UTS Unleashed! was just muh more eÆient at onverting their hanes. Playing in this

game exposed our goalie's weakness with regards to being unable to both remain loalized and see the ball

at the same time.

Next, we played the top-seeded team in our group, the German team, and lost 9{0. Again, our opponent

did not appear so muh better than us, but the small things made a big di�erene in terms of goals. Our

general feeling was one of pride at having aught up with the other teams in terms of many of the low-level

skills suh as fast walking, kiking, loalization, et. But we just didn't have the time to meld those into

quite as tuned a soer strategy as those of the other teams. One highlight of this game was a wonderful

save by our goalie in whih it swatted the ball away with a dive at the last seond and then followed the ball

out to lear it away.

In our next game, we played the eventual tournament runner up, UPennalizers, and lost 6{0.

In plae of our aneled game against Essex, we deided to have a remath from the Amerian Open

against the Metrobots. This time we met with a muh di�erent result, winning 3{1.

We played our last oÆial game against Asura, the winner of the Japan Open. It was 1{1 at halftime,

but we ended up losing 4{1. Still, we ontinued to be happy with the way the team looked in general. The

ball was in our o�ensive end of the �eld a fair amount. We were just less able to sore when we had hanes,

and our goalie ontinued to be a weak link on defense.

Finally, we played one last pratie math against Team Upsalla from Sweden and won 4{0.

Based on all of our pratie mathes, we seemed to be one of the better new teams at the ompetition.

We were in a partiularly hard group, but we were able to ompete at a reasonable level with even the best

teams (despite the lopsided sores).

15.3 The Challenge Events

In addition to the atual games, there was a parallel \hallenge event" ompetition in whih teams pro-

grammed robots to do three speial-purpose tasks:

1. Loating and shooting a blak and white (instead of an orange) ball;

2. Loalizing without the aid of the standard 6 olored �eld markers; and

3. Navigating from one end of the �eld to the other as quikly as possible without running into any

obstales.

Given how muh e�ort we needed to put in just to reate an operational team in time for the ompetition,

we did not fous very muh attention on the hallenges until we arrived in Italy. Nonetheless, we were able

to do quite well, whih we take as a testament to the strengths of our overall team design.

On the �rst hallenge, we �nished in the middle of the pak. Our robot did not sueed at getting all

the way to the blak and white ball (only eight teams sueeded at that), but of all the teams that did not

get to the ball, our robot was one of the losest to it, whih was the tie-breaking soring riterion. Our rank

in this event was 12th.

In this hallenge event, we used our normal vision system with a hange in high-level vision for ball

detetion (see Setion 4.4 for details on objetion reognition). The blak and white ball appears almost

fully white from a distane, i.e. in ases where we an see the entire ball, and the algorithm �rst searhed

for suh blobs whose bounding boxes had the required aspet ratio (1:1). In other ases in whih the ball

is partially oluded, the ball was visualized as being made up of blak and white blobs, and the idea

67

was to group similar sized blobs that were signi�antly lose to eah other (a threshold determined by

experimentation). This required us to also train on the blak and white ball when building up the olor ube

(see Setion 4.2 for details on olor segmentation). This approah worked well in our lab, but on the day of

the hallenge we did not have the properly trained olor ube on the robot, whih resulted in the robot not

being able to see the ball well enough to go to it.

In the loalization hallenge, the robot was given �ve previously unknown points on the �eld and had to

navigate preisely to them without the help of the beaons. Our robot used the goals to loalize initially,

and then relied largely on odometry to �nd the points. Our robot suessfully navigated to only one of the

�ve points, but the large majority of teams failed to do even that. Our sore was suÆient to rank us 5th

plae on this event. Unfortunately we were disquali�ed on a tehniality. We had initially programmed the

robot with the wrong oordinate system (a mere sign hange). Rather than running the robot toward mirror

images of the atual target points, we deided to �x the ode and aept the disquali�ation.

Finally, on hallenge 3, the robot was to move from one side of the �eld to the other as quikly as possible

without touhing any of seven stationary robots plaed in previously unknown positions. Our robot used

an attration and repulsion approah whih pulled it toward the target loation but repelled it from any

observed obstale. The resulting vetor fores were added to determine the instantaneous diretion of motion

for the robot. Sine speed was of the essene, our robot would swith to our fastest gait (ParamWalk) when

no obstales were in sight. A slower gait that allowed omnidiretional movement (SplineWalk) was used for

all other movement.

Our robot was one of only four to make it all the way aross the �eld without touhing an obstale, and

it did so in only 63.38 seonds. The German team sueeded in just 35.76 seonds, but the next losest

ompetitor, ARAIBO, took 104.45 seonds. Thus we ranked 2nd in this event.

OÆially, we �nished 13th in the hallenge events. However the unoÆial results, whih did not take into

aount our disquali�ation in event 2, nor one for the University of Washington, plaed UT Austin Villa

in fourth plae. Given that 16 of the 24 RoboCup teams were returning after having ompeted before, and

several of them had spent more e�ort preparing for the hallenges than we had, we were quite proud of this

result and are enouraged by what it indiates about the general robustness of our ode base.

16 Conlusions and Future Work

The experienes and algorithms reported in this tehnial report omprise the birth of the UT Austin Villa

legged-league robot team. Thanks to a foussed e�ort over the ourse of 5 1/2 months, we were able to

reate an entirely new ode base for the Aibos from srath and develop it to the point of ompeting in

RoboCup 2003.

There are still many diretions for future improvements to our team, as noted throughout this report.

We plan to ontinue our development toward future RoboCup ompetitions. But more importantly, we now

have a fully funtional researh platform and are ready to use it for investigations in various diretions. One

urrent e�ort involves automatially learning to improve the walking parameters; other investigations are

likely to begin shortly.

Overall, developing a ompetitive RoboCup soer team in suh a short period of time has been a

rewarding learning experiene. We look forward to building from it in the future and ontinuing to ontribute

to the RoboCup initiative.

Aknowledgments

Thanks to other members of the original lass from the spring of 2003, all of whom ontributed to the design

proess of our team. Partiular thanks to Nabeel Ahmed, Pradeep Desai, Gregory Jay, Chris Lundberg, and

Aniket Murarka. The authors would also like to thank Sony for developing the robots and sponsoring the

four-legged league, as well as the previous RoboCup legged-league teams for forging the way and providing

68

their soure ode and tehnial reports as doumentation. This researh is supported in part by NSF

CAREER award IIS-0237699.

A Heuristis for the Vision Module

In this appendix, we detail the heuristis used in the vision module that are alluded to in the main text of

Setion 4.

A.1 Region Merging and Pruning Parameters

After the initial olor segmentation and run-length enoding, we attempt to merge the regions that orrespond

to the same objet. This operation is really suessful only if the assoiated olor segmentation is good. But

even then, hoosing the heuristis used in the region merging proess does a�et the performane of the

vision system as a whole. To a large extent the thresholds were hosen based on detailed experimentation

with di�erent numerial values.

� The �rst threshold to be deided is the extent to whih two runlengths need to overlap (i.e. the number

of pair of pixels, one from eah runlength, that have the same horizontal oordinate) before we deide to

merge them. We did try with several values orresponding to varying degrees of overlap. For example if

we set this number to be 1 we are asking for very little overlap between two runlengths (one below the

other) while a number suh as 10 would mean that a signi�ant degree of overlap is expeted between

runlengths orresponding to the same objet. We found that with our olor segmentation, whih does

perform proper segmentation in most ases one it has been trained, we did not gain muh in terms of

auray by setting a high threshold. By setting a low threshold, on the other hand, we found that we

rarely failed to merge regions orresponding to the same objet. So, even though the low threshold did

ause the generation of erroneous bounding boxes in some ases where the olor segmentation did not

do that well, we deided to go for a low threshold of overlap. We only look for a overlap of 1� 2 pixels

and use additional onstraints (some of them are explained below) to remove the spurious blobs.

� One the initial set of bounding boxes have been generated we need to do some pruning to remove

spurious blobs, partiularly those aused due to the lowmerging threshold explained above. We realized

that the numerous small blobs that were reated need to be removed from onsideration. We set a

ouple of thresholds here: the bounding box has to be at least 4 pixels wide along both the x and

the y axes, and eah box needs to have at least 15 pixels to be onsidered any further. This works

�ne for the ball while for other olors we seem to need a lower (seond) threshold to atually obtain

the required performane (we redue it to 9-10 pixels instead of the 15). This removes a lot of noisy

estimates and those that survive are further pruned depending on the objet being searhed for (see

subsequent appendies).

� Another heuristi that we inlude to remove spurious bounding boxes from further onsideration is the

density of the bounding boxes. The density of a bounding box is de�ned as:

Density

Bbox

=

�

no: of pixels of the olor under onsideration in Bbox

(Bbox:lrx �Bbox:ulx) � (Bbox:lry �Bbox:uly)

�

(44)

We determined experimentally that a minimum density requirement of � 0:4 ensures that we remove

most of the spurious bounding boxes generated due to boundary e�et, lighting variations et and at

the same time the really signi�ant blobs are retained for further onsideration.

69

A.2 Tilt Angle Test

The tilt angle test is one of the most widely used heuristis to remove spurious blobs that are generated due

to shadowing and reetane problems. These are generally the blobs that appear to be oating in the sky

or are on the �eld and hene annot represent objets of interest. The motivation for this approah is the

fat that the objets of interest rarely appear above the horizon in the image (they do not appear in the

�eld or on the opponents either). This test is mainly used only in the ase where the robot's head is tilted

down by an angle less than 25

Æ

beause with the head tilted muh lower, the objets may appear above the

horizon too.

In this method, we use the known amera rotation parameters and the bounding boxes obtained in

the image under onsideration to obtain the ompensated tilt angle at whih the objet would have been

observed, with respet to the robot's amera frame of referene, if the robot's head had been at its referene

(base) position (i.e. zero tilt, pan and roll).

Compensated

tilt

(radians) = artan

�

ImgCenter

y

�BboxCentroid

y

FoalP ixConstant

�

+RoboCamTilt (45)

where

1. ImgCenter

y

: This is the enter of the image plane along the y-axis (x varies from 0 � 175 while y

varies from 0� 143) given by b

143

2

 = 71.

2. BboxCentroid

y

: This is the y oordinate of the entroid of the bounding box under onsideration, in

the image plane.

3. FoalP ixConstant: This is a onstant of the robot's amera system, given by ImageResolution �

CameraFoalLength = 72 � 2:18.

4. RoboCamTilt: This is the basi amera tilt of the robot when the image is observed.

This Compensated

tilt

an then be used in onjuntion with experimentally determined thresholds to

remove the spurious blobs from further onsideration in the objet detetion phase. For example, in the ase

of the ball, we ould easily set a threshold and say that the Compensated tilt should not be greater than 1

Æ

for all valid balls. See subsequent appendies for details on individual thresholds for various objets on the

�eld.

A.3 Cirle Method

The orange ball is probably the most important objet that needs to be deteted on the �eld. We need

a good estimate of the ball bounding box as it determines its size and hene its distane from the robot.

This information is very important for planning the game strategy. But in most ases the ball is partially

oluded by the other robots and the objets on the �eld or by the fat that only part of the ball is within

the robot's visual �eld.

One the ball bounding box has been determined, we �nd three points on the irumferene of the ball

by sanning along three lines, one eah along the top, bottom and enter line of the bounding box. Eah of

these points is found by searhing for the orange-to-any-olor and any-olor-to-orange transition. Of ourse,

we do run into problems when the basi olor segmentation of the ball is not perfet and we �nd olors suh

as yellow and red on setions of the ball. But in most ases this method gives a good estimate of the ball

size and hene distane (an error of �10m in distane).

Given the three points, we an determine the equation of the irle that passes through these points and

hene obtain the enter and radius of the irle that desribes the ball and provides an estimate of the ball

size even for partially oluded balls. Consider the ase where we �nd three points in the image plane, say

P

1

= (x

1

; y

1

); P

2

= (x

2

; y

2

) and P

3

= (x

3

; y

3

) (See Figure 18). Sine all these points lie on the irle that

70

desribes the ball, we an then write:

(x� x

1

)

2

+ (y � y

1

)

2

= 0

(x� x

2

)

2

+ (y � y

2

)

2

= 0

(x� x

3

)

2

+ (y � y

3

)

2

= 0

P1

P2

P3

r

b

(x,y) center

L2

L1

a

P1 = (x1, y1)

P2 = (x2, y2)

P3 = (x3, y3)

Cirle Method

Figure 18: Given three point P

1

; P

2

; P

3

we need to �nd the equation of the irle passing through them.

Through the pair of points P

1

; P

2

and P

2

; P

3

we an form two lines L

1

; L

2

. The equations of the two

lines are:

y

L

1

= m

L

1

� (x � x

1

) + y

1

(46)

y

L

2

= m

L

2

� (x � x

2

) + y

2

(47)

where

m

L

1

=

�

y

2

� y

1

x

2

� x

1

�

;m

L

2

=

�

y

3

� y

2

x

3

� x

2

�

(48)

The enter of the irle is the point of intersetion of the perpendiulars to lines L

1

; L

2

, passing through

the mid points of segments P

1

� P

2

; (a) andP

2

� P

3

; (b). The equations of the perpendiulars are obtained

as:

y

0

�a

=

�

�1

m

L

1

�

�

�

x�

x

1

+ x

2

2

�

+

y

1

+ y

2

2

(49)

y

0

�b

=

�

�1

m

L

2

�

�

�

x�

x

2

+ x

3

2

�

+

y

2

+ y

3

2

(50)

Solving for x gives:

x =

m

L

1

�m

L

2

� (y

1

� y

3

) + (m

L

2

�m

L

1

) � x

2

+ (m

L

2

� x

1

�m

L

1

� x

3

)

2 � (m

L

2

�m

L

1

)

(51)

71

y =

(x

1

� x

3

) + (m

L

1

�m

L

2

) � y

2

+ (m

L

2

� y

1

�m

L

1

� y

3

)

2 � (m

L

2

�m

L

1

)

(52)

This gives the radius of the irle as:

r =

p

(x� x

1

)

2

+ (y � y

1

)

2

(53)

This gives us all the parameters we need to get the size of the ball.

A.4 Beaon Parameters

In the ase of beaons, several parameters need to be set, based on experimental values.

1. The two bounding boxes that form the two setions of the beaon are allowed to form a legal beaon

if the number of pixels and number of runlengths in eah setion are at least one-half of that in the

other setion.

2. None of the two regions must be 'too big' in omparison with the other. By 'too big' we refer to ases

where the x and/or y oordinate ranges of one setion are greater than 3�3:5 times the orresponding

ranges of the other bounding box. If 'ul' and 'lr' denote the upper left and lower right orners of the

bounding box, then, for the x oordinates, we would onsider either of the following equations as the

suÆient ondition for rejetion of the formation of a beaon with these two blobs.

(b1:lrx� b1:ulx+ 1) � 3 � (b2:lrx� b2:ulx+ 1)

(b2:lrx� b2:ulx+ 1) � 3 � (b1:lrx� b1:ulx+ 1).

Similarly for the y oordinates:

(b1:lry � b1:uly + 1) � 3 � (b2:lry � b2:uly + 1)

(b2:lry � b2:uly + 1) � 3 � (b1:lry � b1:uly + 1).

The runregion size heks (see Appendix A.1) help ensure the removal of beaons that are too small.

3. The x oordinate of the entroid of eah setion must lie within the x range values of that of the other

setion, i.e.,

b1:ulx � b2

entroidx

� b1:lrx

b2:ulx � b1

Centroidx

� b2:lrx.

4. The distane between setions (in number of pixels) is also used to deide whether two bounding boxes

an be ombined to form a beaon. In our ase this threshold is 3 pixels.

5. Size extension: In the ase of the beaons, similar to the ball (though not to that large a degree),

olusion by other robots an ause part of the beaon to be 'hopped o�'. On the basis of our region

merging and beaon-region-mathing size onstraints, we an still detet beaons with a fair amount

of olusion. But one the beaons have been determined, we extend the size of the beaon suh that

its dimensions orrespond to that of the larger beaon subsetion determined (see Figure 19).

6. Beaon Likelihoods: After the beaon dimensions have been suitably extended, we use the estimated

size and the known aspet ratio in the atual environment to arrive at a likelihood measure for our

estimation. The beaon has a Height : Width :: 2 : 1 aspet ratio. In the ideal ase we would expet

a similar ratio in the image also. So we ompare the aspet ratio in the image with the desired aspet

ratio and this provides us with an initial estimate of the likelihood of the estimate. Whenever there

are multiple ourrenes of the same beaon this value is used as a riterion and the 'most-likely'

beaon values are retained for further alulations. Further, sine the ourrene of false positives is a

greater problem (for loalization) than the ase where we miss some beaon, we only use beaons with

a likelihood � 0:6 for loalization omputations.

72

 (a) (b)

Figure 19: This �gure shows the basi beaon size extension to ompensate for partial olusions. Case (a)

is an example of vertial extension while ase(b) depits an example of horizontal extension.

A.5 Goal Parameters

The parameters/heuristis for the goal were seleted experimentally and they a�et the performane of the

robot with respet to goal detetion. Some of them are as enumerated below:

1. We desire to be able to detet the goals aurately both when they are at a distane and when they

are really lose to the robot and in eah ase the image aptured by the robot (of the goal) and hene

the bounding boxes formed are signi�antly di�erent. So we use almost the same riteria as with

other objets (runlengths, pixels, density, aspet ratio et) but speify ranges. The ranges are hosen

appropriately; we �rst use strit onstraints and searh for ideal goals that are learly visible and are

at lose range (this gets assigned a high likelihood - see next point) but if we fail to do so, we relax the

onstraints and try again to �nd the goals. In addition, we have slightly di�erent parameters tuned for

yellow and blue goals beause the identi�ation of the two goals di�ers based on the lighting onditions,

robot amera settings et.

� Runlengths: at a minimum we require 10� 14.

� Number of pixels: high values 3000-4000+, low values 200-400+.

� Aspet ratio: length/width : 1:1� 1:3 (at least) but not more than 2:5� 3:0.

� Density: at least 0.5+.

2. Tilt-angle test: In the ase of the goals we do not want them to be either too high or too low with respet

to the horizon. So we apply the same tilt angle heuristi (Appendix A.2) but with two thresholds. In

our ase, these angles are in the range: (7 to 10)

Æ

(high) and (�11 to � 8)

Æ

(low).

3. We also observed onditions wherein a yellow blob appears in the ball, when some portions of the

orange ball have non-uniform illumination and/or reetane properties (this should not be onsidered

as the goal). Another heuristi is therefore alulated to prevent this: the position of the blob entroid

with respet to the ball entroid. If the size of the goal is smaller and the entroid lies somewhere on

the ball, we are likely to rejet this estimate of the goal.

4. Goal Likelihood: After the goal dimensions have been determined, we use the estimated size and the

known aspet ratio in the atual environment to arrive at a likelihood measure for our estimation. The

goals have a Height : Width :: 1 : 2 aspet ratio. In the ideal ase we would expet a similar ratio in

the image also. So we ompare the aspet ratio in the image with the desired aspet ratio and this

provides us with an initial estimate of the likelihood of the estimate. Further, we only use goals with

a likelihood � 0:6 for loalization omputations. In fat, we use the goal edges and not the goals for

loalization and they are assumed to have the same likelihood as the goal they belong to.

73

A.6 Ball Parameters

In the ase of the ball, again several of the tests are the same as those in the ase of the goals and/or beaons

but the parameters are di�erent, these are determined experimentally.

1. There are some general onstraints:

� Density: at least 0:5+ and Aspet ratio: length/width : 0:7� 1:3 (strit).

� Relax Aspet ratio onstraints but with

(a) Runlengths: at a minimum we require 10� 14 and,

(b) Number of pixels: high values 1000-1400+, low values 200-400+ or

() Size: extends to

1

3

of the length or height of the image frame.

2. Tilt test: The ball annot 'oat in the air'. We apply the tilt-angle heuristi with an upper threshold

of (1 to 5)

Æ

.

3. Cirle method: In this ase, we ignore the ball size generated by this method if it is too small (2pixels),

too large (85pixels) or muh smaller than the 'unompensated' size that existed before the irle method

was applied.

4. Ball Likelihood: Here, we hoose a simple method to assign the likelihood: assign a high likelihood

(0:75� 0:9 depending on size of ball) if the irle method generates a valid ball size and assign a low

likelihood (0:5� 0:7) if the irle method fails and we are fored to aept the initial estimate.

A.7 Opponent Detetion Parameters

In this setion, we provide some of the parameters used in the opponent detetion proess. As mentioned in

the vision module (Setion 4.4), the height of the blob is used to arrive at an estimate of the distane to the

opponent and its bearing with respet to the robot, by the same approah used with other objets in the

image frame. Some sample thresholds:

1. For the basi detetion of a blob as a andidate opponent blob, we use the onstraints on runlengths,

number of pixels et whih deide the tradeo� between auray and the maximum distane at whih

the opponents an be reognized.

� Pixel threshold: we set a threshold of 150� 300 pixels.

� Runlengths: we require around 10.

2. Tilt test: The opponents annot oat muh above the ground and annot appear muh below the

horizon (in the ground) with the robot's head not being tilted muh. The threshold values here are 1

Æ

(high) and �10

Æ

(low).

3. Merging in vision: This is similar to the region merging proess. Two blobs that are reasonably lose

in the visual frame are merged if the interblob distane is less in the range of 20� 30 pixels. Varying

the threshold varies the opponent detetion 'resolution' i.e. how far two opponents have to be to be

reognized as two di�erent robots.

A.8 Opponent Blob Likelihood Calulation

We use an extremely simple approah to determine the likelihood of the opponents found in the image. This

is done by omparing the properties of the opponent blob with the 'ideal' values (those that orrespond to the

atual presene of an opponent) determined by experimentation (some are listed in the previous appendix).

� A member of the opponent list that has more than 450� 500 pixels and more than 10 runlengths is

given a very high likelihood (0:9+).

74

� For other members, we make the likelihood proportional to the maximum based on the number of

pixels.

� Blobs that have low probability are not aepted in the list of opponents. Also, these get eliminated

very easily during merging with estimates from other teammates.

A.9 Coordinate Transforms

Consider the ase where we want to transform from the loal oordinate frame to the global oordinate

frame. Figure 20 shows the basi oordinate system arrangement. To �nd the position of any point (x

l

; y

l

)

given in the loal oordinate system (x; y), with respet to the global oordinate system (X;Y), we use the

knowledge of the fat that the loal oordinate system has its origin at (p

x

; p

y

) and is oriented at an angle

� with respet to the global oordinate frame.

theta

(p_x, p_y)

(0,0)

y x

Y

X

(x_l, y_l)

Figure 20: This �gure shows the basi global and loal oordinate systems.

0

�

X

g

Y

g

1

1

A

=

0

�

os(�) � sin(�) p

x

sin(�) os(�) p

y

0 0 1

1

A

0

�

x

l

y

l

1

1

A

(54)

By a similar matrix transform we an move from the global oordinate frame to the loal oordinate

frame.

0

�

x

l

y

l

1

1

A

=

0

�

os(�) � sin(�) �p

x

os(�)� p

y

sin(�)

sin(�) os(�) p

x

sin(�)� p

y

os(theta)

0 0 1

1

A

0

�

X

g

Y

g

1

1

A

(55)

These are the equations that we refer to whenever we speak about transforming from loal to global

oordinates or vie versa. For more details on oordinate transforms in 2D and/or 3D see [9℄.

75

Referenes

[1℄ Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiihi Osawa. RoboCup: The Robot

World Cup Initiative. Proeedings of the First International Conferene on Autonomous Agents. February,

1997, pp. 340{347.

[2℄ Manuela Veloso, Sott Lenser, Douglas Vail, Maayan Roth, Ashley Stroupe, and Sonia Chernova.

CMPak-02: CMU's Legged Robot Soer Team. 2002.

http://www.openr.org/roboup/ode2002SDK/CMU/mu teamdes.pdf.

[3℄ James Brue, Tuker Balh, and Manuela Veloso. Fast and Inexpensive Color Image Segmentation for

Interative Robots. In Proeedings of IROS-2000, Japan, Otober 2000.

http://www-2.s.mu.edu/ mmv/papers/wirevision00.pdf.

[4℄ Spener Chen, Martin Siu, Thomas Vogelgesang, Tak Fai Yik, Bernhard Hengst, Son Bao Pham, and

Claude Sammut. The UNSW RoboCup 2001 Sony Legged League Team. 2001

http://www.se.unsw.edu.au/ roboup/2002site/

[5℄ H.-D. Burkhard, U. D�u�ert, J. Ho�mann, M. J�ungel, M. L�otzsh, R. Brunn, M. Kallnik, N. Kuntze, M.

Kunz, S. Petters, M. Risler, O. v. Stryk, N. Koshmieder, T. Laue, T. R�ofer, Spiess, A. Cesarz, I. Dahm,

M. Hebbel, W. Nowak, J. Ziegler. 2002. German Team 2002.

http://www.roboup.de/germanteam/GTeng/index.html.

[6℄ T. R�ofer and M. J�ungel, Vision-Based Fast and Reative Monte-Carlo Loaliza-

tion, In: Pro. International Conferene on Robotis and Automation (ICRA-2003).

http://www.roboup.de/germanteam/GTeng/index.html.

[7℄ Rafael C. Gonzalez and Rihard E. Woods, Digital Image Proessing, Prentie Hall, 2002.

[8℄ Rihard O. Duda, Peter E. Hart and David G. Stork, Pattern Classi�ation, John Wiley and Sons, In.,

New York 2001.

[9℄ Robert J. Shilling, Fundamentals of Robotis: Analysis and Control, Prentie Hall Publiations, 2000.

[10℄ Ashley W. Stroupe, Martin C. Martin and Tuker Balh, Merging Probabilisti Observations for Mobile

Distributed Sensing, CMU-RI-00-30, Carnegie Mellon University, Pittsburgh, PA, 2000.

[11℄ Control Tutorials for Matlab: PID Tutorial.

http://rlsgi.eng.ohio-state.edu/matlab/PID/PID.html.

[12℄ Bernhard Hengst, Darren Ibbotson, Son Bao Pham and Claude Sammut, Omnidiretional Motion for

Quadruped Robots, RoboCup International Symposium, August 7-8, 2001 in Leture Notes in Computer

Siene, Leture Notes in Arti�ial Intelligene LNAI 2377 A. Birk, S. Coradeshi, S. Tadokoro (Eds.):

RoboCup 2001: Robot Soer World Cup V, Springer 2002. p.368 �..

76

