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Policy Gradient RL for fast walk [Kohl ’04]

Goal: Enable an Aibo to walk as fast as possible

• Start with a parameterized walk

• Learn fastest possible parameters

• No simulator available:

− Learn entirely on robots
− Minimal human intervention

New Goal: fast walk with a stable camera
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Usefulness of stability

• Keep objects centered, in the image
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Usefulness of stability

• Keep objects centered, in the image

• Reduce rotations:

− Eliminate need to transform image
− Object detection: better speed/accuracy tradeoff
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Two possible approaches

1. Learn a walk that naturally keeps head stable
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Two possible approaches

1. Learn a walk that naturally keeps head stable

2. Actively rotate the neck to compensate for walk motion

May need to trade off against speed

Peter Stone



A Parameterized Walk
• Developed from scratch as part of UT Austin Villa 2003

• Trot gait with elliptical locus on each leg
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Locus Parameters
• Ellipse length
• Ellipse height
• Position on x axis
• Position on y axis
• Body height
• Timing values
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Locus Parameters
• Ellipse length
• Ellipse height
• Position on x axis
• Position on y axis
• Body height
• Timing values

• Head pan/tilt motion

12 (16) continuous parameters
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Full parameterization

• Front ellipse height, x-pos., y-pos. [3]

• Rear ellipse height, x-pos., y-pos. [3]

• Ellipse length [1]

• Ellipse skew multiplier in the x-y plane (for turning) [1]

• Front/rear body height [2]

• Time for each foot to complete ellipse [1]

• Fraction of time each foot spends on the ground [1]
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Full parameterization

• Front ellipse height, x-pos., y-pos. [3]

• Rear ellipse height, x-pos., y-pos. [3]

• Ellipse length [1]

• Ellipse skew multiplier in the x-y plane (for turning) [1]

• Front/rear body height [2]

• Time for each foot to complete ellipse [1]

• Fraction of time each foot spends on the ground [1]

• Head pan limit and increment [2]

• Head tilt limit and increment [2]
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Previous Experimental Setup
• Policy π = {θ1, . . . , θ12}, V (π) = walk speed when using π
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Previous Experimental Setup
• Policy π = {θ1, . . . , θ12}, V (π) = walk speed when using π

• Training Scenario

− Robots time themselves traversing fixed distance
− Off-board computer collects results, assigns policies

No human intervention except battery changes

Peter Stone



Modified Objective Function
• Mt : time to walk fixed distance

• Ma : stddev. of 3 accelerometers
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Modified Objective Function
• Mt : time to walk fixed distance

• Ma : stddev. of 3 accelerometers

• Md : dist. of landmark centroid to image center

• Mθ : landmark tilt angle

d

a

V (π) = 1− (wtMt + waMa + wdMd + wθMθ)
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Policy Gradient RL

• From π want to move in direction of gradient of V (π)

Peter Stone



Policy Gradient RL

• From π want to move in direction of gradient of V (π)

− Can’t compute ∂V (π)
∂θi

directly: estimate empirically

Peter Stone



Policy Gradient RL

• From π want to move in direction of gradient of V (π)

− Can’t compute ∂V (π)
∂θi

directly: estimate empirically

• Evaluate neighboring policies to estimate gradient

• Each trial randomly varies every parameter

Peter Stone



Policy Gradient RL
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Fast Walk Results
V (π) = 1−Mt
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Fast Walk Results
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V (π) = 1− (wtMt + waMa + wdMd + wθMθ)
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Approach 1: Learning a Stable Gait
Favor speed Equal weights
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Approach 1: Learning a Stable Gait
Favor speed Equal weights

Reduction Percentage
Favor speed Equal weights

Mt -4.76% -4.5%
Ma 34.7 32.6
Md 60 57.14
Mθ 76.9 51.2

Peter Stone



Segmentation Videos

Fast Walk Stable Walk
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Approach 2: Head Compensation
Favor speed Equal weights
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Stability Improves Object Detection

• Traverse field while identifying beacons

• Results scored based on ground truth
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Stability Improves Object Detection

• Traverse field while identifying beacons

• Results scored based on ground truth

True Positives False Positives
Fast Gait 0.33 0.052
Stable Gait 0.46 0.028

• 39% more true positives; 54% fewer false positives

• Statistically significant
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Summary

• Policy gradient learning of stable Aibo walk

• All learning done on real robots

• Stability helps vision
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