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• Autonomous agents
• Multiagent systems
• Machine learning
• Robotics
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Autonomous Intelligent Agents

• They must sense their environment.
• They must decide what action to take (“think”).
• They must act in their environment.

Complete Intelligent Agents

• Interact with other agents (Multiagent systems)
• Improve performance from experience (Learning agents)

Autonomous Bidding, Cognitive Systems,
Traffic management, Robot Soccer
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RoboCup

Goal: By the year 2050, a team of humanoid robots
that can beat the human World Cup champion team.

• An international research initiative

• Drives research in many areas:

− Control algorithms; machine vision, sensing; localization;
− Distributed computing; real-time systems;
− Ad hoc networking; mechanical design;
− Multiagent systems; machine learning; robotics

Several Different Leagues
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RoboCup Soccer
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Sony Aibo (ERS-210A, ERS-7)
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Sony Aibo (ERS-210A, ERS-7)
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Competitions

• Barely “closed the loop” by American Open (May, ’03)

• Improved significantly by Int’l RoboCup (July, ’03)

• Won 3rd place at US Open (2004, 2005)

• Quarterfinalist at RoboCup (2004, 2005)

• Highlights:
− Many saves: 1; 2; 3; 4;
− Lots of goals: CMU; Penn; Penn; Germany;

− A nice clear
− A counterattack goal
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Post-competition: the research

• Model-based joint control [Stronger, S, ’04]

• Learning sensor and action models [Stronger, S, ’06]

• Machine learning for fast walking [Kohl, S, ’04]

• Learning to acquire the ball [Fidelman, S, ’06]

• Color constancy on mobile robots [Sridharan, S, ’04]

• Robust particle filter localization [Sridharan, Kuhlmann, S, ’05]

• Autonomous Color Learning [Sridharan, S, ’05]
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• Mobile robots rely on models of their actions and sensors

− Typically tuned manually: Time-consuming
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Learned Actuator/Sensor Models

• Mobile robots rely on models of their actions and sensors

− Typically tuned manually: Time-consuming

• Autonomous Sensor and Actuator Model Induction
(ASAMI)

• ASAMI is autonomous: no external feedback

− Developmental robotics

• Implemented and validated on Aibo ERS-7

Peter Stone



The Task

distance
sensor input

• Sensor model: beacon height in image 7→ distance

− Mapping motivated by camera specs not accurate
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The Task

distance
sensor input

• Sensor model: beacon height in image 7→ distance

− Mapping motivated by camera specs not accurate

• Action model: parametrized walking, W(x) 7→ velocity

− W(0) steps in place
− W(-300) has velocity -300
− W(300) has velocity 300

Peter Stone



Experimental Setup

• Aibo alternates walking forwards and backwards

– Forwards: random action in [0, 300]
– Backward phase: random action in [−300, 0]
– Switch based on beacon size in image
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Experimental Setup

• Aibo alternates walking forwards and backwards

– Forwards: random action in [0, 300]
– Backward phase: random action in [−300, 0]
– Switch based on beacon size in image

• Aibo keeps self pointed at beacon

Peter Stone



Learning Action and Sensor Models

• Both models provide info about the robot’s location

• Sensor model: observation obsk 7→ location:
xs(tk) = S(obsk)
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Learning Action and Sensor Models

• Both models provide info about the robot’s location

• Sensor model: observation obsk 7→ location:
xs(tk) = S(obsk)

• Action model: action command C(t) 7→ velocity:
xa(t) = x(0) +

∫ t

0
A(C(s)) ds

• Goal: learn arbitrary continuous functions, A and S

− Use polynomial regression as function approximator
− Models learned in arbitrary units

Peter Stone



Learning a Sensor Model
• Assume accurate action model
• Plot xa(t) against beacon height in image
• Best fit polynomial is learned sensor model
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Learning a Sensor Model
• Assume accurate action model
• Plot xa(t) against beacon height in image
• Best fit polynomial is learned sensor model
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Learning an Action Model
• Assume accurate sensor model
• Plot xs(t) against time
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Learning an Action Model
• Assume accurate sensor model is accurate
• Plot xs(t) against time

x (t)s

Learned Action Model:
Observations:

Time (s)

• Compute action model that minimizes the error
• Problem equivalent to another polynomial regression
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• Both models improve via bootstrapping
− Maintain two notions of location, xs(t) and xa(t)
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Learning Both Simultaneously
• Both models improve via bootstrapping
− Maintain two notions of location, xs(t) and xa(t)
− Each used to fit the other model

• Use weighted regression
− wi = γn−i, γ < 1
− Can still be computed incrementally

• Ramping up

tS A tA 0 t = 0

t = t

t = 2tstart

start
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Learning Both Simultaneously

• Over 2.5 min., xs(t) and xa(t) converge

Time (s)

x(t)
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Experimental Results

• Run ASAMI for pre-set amount of time (2.5 minutes)
• Measure actual models with stopwatch and ruler
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Experimental Results

• Run ASAMI for pre-set amount of time (2.5 minutes)
• Measure actual models with stopwatch and ruler
• Compare measured vs. learned after best scaling

Measured Action Model:
Learned Action Model:

Vel.

Action Command

Learned Sensor Model:
Measured Sensor Model:

Beacon Height

Dist.
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Experimental Results

• Average fitness of model over 15 runs
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Summary

• ASAMI: Autonomous, no external feedback

• Computationally efficient

• Starts with poor action model, no sensor model

− Learns accurate approximations to both models
− Models are to scale with each other

Peter Stone



Outline

• Learning sensor and action models [Stronger, S, ’06]

• Machine learning for fast walking [Kohl, S, ’04]

• Learning to acquire the ball [Fidelman, S, ’06]

• Color constancy on mobile robots [Sridharan, S, ’04]

• Autonomous Color Learning [Sridharan, S, ’06]
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Peter Stone



Policy Gradient RL to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

• Start with a parameterized walk

• Learn fastest possible parameters

Peter Stone



Policy Gradient RL to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

• Start with a parameterized walk

• Learn fastest possible parameters

• No simulator available:

− Learn entirely on robots
− Minimal human intervention

Peter Stone



Walking Aibos

• Walks that “come with” Aibo are slow

• RoboCup soccer: 25+ Aibo teams internationally

− Motivates faster walks
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Walking Aibos

• Walks that “come with” Aibo are slow

• RoboCup soccer: 25+ Aibo teams internationally

− Motivates faster walks

Hand-tuned gaits [2003] Learned gaits
German UT Austin Hornby et al. Kim & Uther
Team Villa UNSW [1999] [2003]

230 mm/s 245 254 170 270 (±5)
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A Parameterized Walk
• Developed from scratch as part of UT Austin Villa 2003

• Trot gait with elliptical locus on each leg

Peter Stone



Locus Parameters
z

x

y

• Ellipse length
• Ellipse height
• Position on x axis
• Position on y axis
• Body height
• Timing values

12 continuous parameters
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Locus Parameters
z

x

y

• Ellipse length
• Ellipse height
• Position on x axis
• Position on y axis
• Body height
• Timing values

12 continuous parameters

• Hand tuning by April, ’03: 140 mm/s
• Hand tuning by July, ’03: 245 mm/s

Peter Stone



Experimental Setup
• Policy π = {θ1, . . . , θ12}, V (π) = walk speed when using π
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Experimental Setup
• Policy π = {θ1, . . . , θ12}, V (π) = walk speed when using π

• Training Scenario

− Robots time themselves traversing fixed distance
− Multiple traversals (3) per policy to account for noise
− Multiple robots evaluate policies simultaneously
− Off-board computer collects results, assigns policies

No human intervention except battery changes

Peter Stone
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Experiments
• Started from stable, but fairly slow gait

• Used 3 robots simultaneously

• Each iteration takes 45 traversals, 71
2 minutes
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Experiments
• Started from stable, but fairly slow gait

• Used 3 robots simultaneously

• Each iteration takes 45 traversals, 71
2 minutes

Before learning After learning

• 24 iterations = 1080 field traversals, ≈ 3 hours
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Results
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• Additional iterations didn’t help
• Spikes: evaluation noise? large step size?
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Learned Parameters
Parameter Initial ε Best

Value Value
Front ellipse:

(height) 4.2 0.35 4.081
(x offset) 2.8 0.35 0.574
(y offset) 4.9 0.35 5.152

Rear ellipse:
(height) 5.6 0.35 6.02

(x offset) 0.0 0.35 0.217
(y offset) -2.8 0.35 -2.982

Ellipse length 4.893 0.35 5.285
Ellipse skew multiplier 0.035 0.175 0.049
Front height 7.7 0.35 7.483
Rear height 11.2 0.35 10.843
Time to move

through locus 0.704 0.016 0.679
Time on ground 0.5 0.05 0.430

Peter Stone



Algorithmic Comparison, Robot Port

Before learning After learning
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Summary

• Used policy gradient RL to learn fastest Aibo walk

• All learning done on real robots

• No human itervention (except battery changes)

Peter Stone



Outline

• Learning sensor and action models [Stronger, S, ’06]

• Machine learning for fast walking [Kohl, S, ’04]

• Learning to acquire the ball [Fidelman, S, ’06]

• Color constancy on mobile robots [Sridharan, S, ’05]

• Autonomous Color Learning [Sridharan, S, ’06]
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Grasping the Ball

• Three stages: walk to ball; slow down; lower chin

• Head proprioception, IR chest sensor 7→ ball distance

• Movement specified by 4 parameters
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Grasping the Ball

• Three stages: walk to ball; slow down; lower chin

• Head proprioception, IR chest sensor 7→ ball distance

• Movement specified by 4 parameters

Brittle!
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Parameterization
• slowdown dist: when to slow down

• slowdown factor: how much to slow down

• capture angle: when to stop turning

• capture dist: when to put down head
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Learning the Chin Pinch

• Binary, noisy reinforcement signal: multiple trials

• Robot evaluates self: no human intervention

Peter Stone



Results

• Evaluation of policy gradient, hill climbing, amoeba
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What it learned

Policy slowdown slowdown capture capture Success
dist factor angle dist rate

Initial 200mm 0.7 15.0o 110mm 36%
Policy gradient 125mm 1 17.4o 152mm 64%

Amoeba 208mm 1 33.4o 162mm 69%
Hill climbing 240mm 1 35.0o 170mm 66%

Peter Stone



Instance of Layered Learning
• For domains too complex for tractably mapping state

features S 7−→ outputs O
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Instance of Layered Learning
• For domains too complex for tractably mapping state

features S 7−→ outputs O

• Hierarchical subtask decomposition given: {L1, L2, . . . , Ln}

• Machine learning: exploit data to train, adapt

• Learning in one layer feeds into next layer

Individual Behaviors

Team Behaviors

Adversarial Behaviors

Environment

High Level Goals

Opportunities
Machine LearningMulti-Agent Behaviors

World State
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