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Research Question

To what degree can autonomous
intelligent agents learn in the presence of
teammates and/or adversaries in
real-time, dynamic domains?
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e Autfonomous agents
e Multiagent systems
e Machine learning

e Robotics
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Autonomous Intelligent Agents

e [They must sense their environment.
e [They must decide what action to take ("think™).
e [They must act in their environment.
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Autonomous Intelligent Agents

e [They must sense their environment.
e [They must decide what action to take ("think™).
e [They must act in their environment.

Complefe Intelligent Agents

e INnteract with other agents (Multiagent systems)
e Improve performance from experience (Learning agents)

Autonomous Bidding, Cognitfive Systems,
Traffic management, Robot Soccer
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RoboCup
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RoboCup

Goal: By the year 2050, a feam of humanoid robots
that can beat the human World Cup champion team.

e AN infernational research initiative

e Drives research in many areas:

— Control algorithms; machine vision, sensing; localization;
— Distributed computing; real-fime systems;

— Ad hoc networking; mechanical design;

— Multiagent systems; machine learning; robotics

Several Different Leagues
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RoboCup Soccer
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Sony Aibo (ERS-210A, ERS-7)

Speaker and microphone
Electrostatic sensors X

Infrared range sensors
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Sony Aibo (ERS-210A, ERS-7)

Color camera
» Resoluton: 208 x 160

/ » 30 frames per second

Wireless ethernet
(802.11b)

*On-board processor

« 576 MHz

« 64 MB RAM
+035: Aperios + Open-R
*Programming Language: C++

. Department of Computer Sciences
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Sony Aibo (ERS-210A, ERS-7)

20 degrees of freedom

* head: 3 neck, 2 ears, 1 mouth

* 4 legs: 3 joints each

» tail: 2 DOF

Joint |1

Joint 2

Joint 3
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Creating a team — Subtasks
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e Ball manipulation (kicking)

¢ Individual decision making
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Competitions

e Barely "closed the loop” by American Open (May, ’03)
e Improved significantly by Int’l RoboCup (July, 03)

e \Won 3rd place at US Open (2004, 2005)

e Quarterfinalist at RoboCup (2004, 2005)

e Highlights:
— Many saves: 1; 2; 3; 4;
— Lots of goals: CMU; Penn; Penn; Germany;

— A nice clear
— A counteratftack goal
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Post-competition: the research

e Model-based joint control (Stronger, S, '04)

e Learning sensor and action models (Stronger, S, ‘06)

e Machine learning for fast walking (Kohl, S, ‘04)

e Learning to acquire the ball (Fidelman, S, ‘06)

e Color constancy on mobile robots (Sridharan, S, ‘04)

e Robust particle filter localization (Sridharan, Kuhimann, S, ‘05)

e Autonomous Color Learning (Sridharan, S, 05)
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Learned Actuator/Sensor Models

e Mobile robofts rely on models of their actions and sensors

— Typically tuned manually: Time-consuming
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Learned Actuator/Sensor Models

e Mobile robofts rely on models of their actions and sensors

— Typically tuned manually: Time-consuming

e Autonomous Sensor and Actuator Model Induction
(ASAMI)

e ASAMI is autonomous: no external feedback

— Developmental robotics

e Implemented and validated on Aibo ERS-7
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The Task

e Sensor model: beacon height in image — distance

— Mapping motivated by camera specs not accurate
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The Task

e Sensor model: beacon height in image — distance

— Mapping motivated by camera specs not accurate

e Action model: parametrized walking, W(x) — velocity

— W(0) steps in place
— W(-300) has velocity -300
— W(300) has velocity 300
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Experimental Setup

e Aibo alfernates walking forwards and backwards

- Forwards: random action in [0, 300]
- Backward phase: random action in [—300, 0]
- Switch based on beacon size in image
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Experimental Setup

e Aibo alfernates walking forwards and backwards

- Forwards: random action in [0, 300]
- Backward phase: random action in [—300, 0]
- Switch based on beacon size in image

e AIDO keeps self pointed atf beacon

Peter Stone



Learning Action and Sensor Models

e Both models provide info about the robot’s location

e Sensor model: observation obs; — location:
xs(tr) = S(obsg)
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Learning Action and Sensor Models

e Both models provide info about the robot’s location

e Sensor model: observation obs; — location:
xs(tr) = S(obsg)

e Action model: action command C(t) — velocity:
za(t) = 2(0) + [y A(C(s)) ds

e Goal: learn arbitrary continuous functions, A and S
— Use polynomial regression as function approximator
— Models learned in arbitrary unifs
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Learning a Sensor Model

e Assume accurate action model
e Plof z,(t) against beacon height in image
e Best fit polynomial is learned sensor model
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e Assume accurate action model
e Plof z,(t) against beacon height in image
e Best fit polynomial is learned sensor model
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Learning an Action Model

e ASSume accurate sensor model
e Plotf x,(t) against fime
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Learning an Action Model

e ASSume accurate sensor model
e Plotf x,(t) against fime
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e Compute action model that minimizes the error
e Problem equivalent to another polynomial regression
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Learning an Action Model

e ASsUuMe accurate sensor model is accurate
e Plof x4(t) against time
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Learning Both Simultaneously

e Both models improve via bootstrapping

— Maintain fwo nofions of location, z4(t) and x,(t)
— Each used fo fit the other model
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Learning Both Simultaneously

e Both models improve via bootstrapping

— Maintain fwo nofions of location, z4(t) and x,(t)
— Each used fo fit the other model

e Use weighted regression
— wi:’y”_i,’y< 1
— Can still be computed incrementally

e ROmping up S
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Learning Both Simultaneously

e Over 2.5 min., z4(t) and z,(t) converge
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Experimental Results

e Run ASAMI for pre-set amount of time (2.5 minufes)
e Measure actual models with stopwatch and ruler
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e Run ASAMI for pre-set amount of time (2.5 minufes)
e Measure actual models with stopwatch and ruler
e Compare measured vs. learned affer best scaling
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Experimental Results

e Average fitness of model over 15 runs
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Summary

e ASAMI: Autonomous, no external feedback
e Computationally efficient

e Starts with poor action model, no sensor model

— Learns accurate approximations to both models
— Models are to scale with each other
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Outline

e Learning sensor and action models (Stronger, S, ‘06)
e Machine learning for fast walking (Kohl, S, ‘04)

e Learning to acquire the ball (Fidelman, S, '06)

e Color constancy on mobile robots (Sridnaran, S, ‘04)

e Autonomous Color Learning (Sridharan, S, ‘06)
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Policy Gradient RL to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

e Start with a parameterized walk
e Learn fasftest possible parameters

e No simulator available:

— Learn entirely on robofs
— Minimal human intervention
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Walking Aibos

e Walks that "come with” Aibo are slow

e RoboCup soccer: 25+ Aibo teams internationally

— Motivates faster walks
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Walking Aibos

e Walks that "come with” Aibo are slow

e RoboCup soccer: 25+ Aibo teams internationally

— Motivates faster walks

Hand-tuned gaits (2003) Learned gaits
German UT Austin Hornby et al.  Kim & Uther
Team Villa UNSW (1999) (2003)
230 mm/s 245 254 170 270 (+5)
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A Parameterized Walk

e Developed from scratch as part of UT Austin Villa 2003

e Trot gait with elliptical locus on each leg
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Locus Parameters

e Ellipse length

e Ellipse height

e Posifion on x axis
e Position on y axis
e Body height

e [IMing values

12 continuous parameters
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Locus Parameters

e Ellipse length

e Ellipse height

e Posifion on x axis
e Position on y axis
e Body height

e [IMing values

12 continuous parameters

e Hand tuning by April, ‘03: 140 mm/s
e Hand ftuning by July, '03: 245 mm/s
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Experimental Setup

e Policy m ={604,...,012}, V() = walk speed when using =
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Experimental Setup

e Policy m = {64, ..

e Training Scenario

— Robofts time themselves traversing fixed distance
— Multiple traversals (3) per policy to account for noise
— Multiple robots evaluate policies simultaneously
— Off-board computer collects results, assigns policies

., 012}, V() = walk speed when using =

No human intervention except battery changes

Um Department of Computer Sciences
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Policy Gradient RL

e From m want fo move in directfion of gradient of V()
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Policy Gradient RL

e From m want fo move in directfion of gradient of V()

— Can't compute 274" directly: estimate empirically
e Evaluate neighboring policies o estimate gradient

e Each frial randomly varies every parameter
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Experiments

e Started from stable, but fairly slow gait
e Used 3 robots simultaneously

e Each iteration takes 45 fraversals, 71 minutes
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Experiments

e Started from stable, buft fairly slow gait
e Used 3 robots simultaneously

e Each iteration takes 45 fraversals, 71 minutes

Before learning After learning

e 24 iterations = 1080 field traversals, ~ 3 hours
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Results

Velocity (mm/s)
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Results

300

Velocity of Learned Gait during Training
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e Additional iterations didn’t help
e Spikes: evaluation noise? large step size”?
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Learned Parameters

Parameter Initial € Best
Value Value
Front ellipse:
(height) 4.2 0.35 | 4.081
(x offset) 2.8 0.35 | 0.574
(y offset) 4.9 0.35 | 5.152
Rear ellipse:
(height) 9.6 0.35 6.02
(x offset) 0.0 0.35 | 0.217
(y offset) -2.8 0.35 | -2.982
Ellipse length 4893 | 0.35 | 5285
Ellipse skew multiplier | 0.035 | 0.175 | 0.049
Front height 7.7 0.35 | 7.483
Rear height 11.2 | 0.35 | 10.843
Time to move
through locus 0.704 | 0.016 | 0.679
Time on ground 0.5 0.05 | 0.430

Computer Sciences
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Algorithmic Comparison, Robot Port

Velocily of Learned Gait during Training
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Summary

e Used policy gradient RL to learn fastest Aibo walk
e All learning done on real robots

e No human itervention (except battery changes)
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Outline

e Learning sensor and action models (Stronger, S, ‘06)
e Machine learning for fast walking (Kohl, S, '04)

e Learning to acquire the ball (Fidelman, S, ‘06)

e Color constancy on mobile robots (Sridnaran, S, ‘05)

e Autonomous Color Learning (Sridharan, S, ‘06)
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Grasping the Bali

e Three stages: walk o ball; slow down; lower chin
e Head proprioception, IR chest sensor — ball distance

e Movement specified by 4 parameters
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Grasping the Bali

e Three stages: walk o ball; slow down; lower chin

e Head proprioception, IR chest sensor — ball distance

e Movement specified by 4 parameters

Brittle!
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Parameterization

e slowdown_dist: when to slow down

e slowdown_factor: how much 1o slow down

e capture_angle: when to stop furning

- | -
& 4 "';'
L

"
l “

e capture_dist: when to puft down head
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Learning the Chin Pinch

e Binary, noisy reinforcement signal: multiple trials

e RObOT evaluates self: no human intervention

Department of Computer Sciences
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Results

e Evaluation of policy gradient, hill climbing, amoeba

100

successful captures out of 100 trials

sof | .
20 f
10 — policy gradient
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— - hill climbing
0 | | | | I
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iterations
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What it learned

Policy slowdown | slowdown | capture | capture || Success
dist factor angle dist rate
Inifial 200mm 0.7 15.0° 110mm 36%
Policy gradient 125mm 1 17.4° 152mm 64%
Amoeba 208mm ] 33.4° 162mm 69%
Hill climbing 240mm 1 35.0° 170mm 66%
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Instance of Layered Learning

e FOor domains too complex for tractably mapping state
features S —— outputs O
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