An Architecture for Action Selection in Robotic Soccer

Peter Stone

Joint work with David McAllester

RoboCup

An international AI and Robotics research initiative

• Use soccer as a rich and realistic test-bed

Research challenges

- Multiple teammates with a common goal
- Multiple adversaries not known in advance
- Real-time decision making necessary
- Noisy sensors and actuators
- Enormous state-space

CMUnited-99

- Stone, Riley, Veloso
- 1999 simulator league world champions
- 37-team field; Total score: 110–0 (8 games)

- Learned low-level behaviors
- Heuristic high-level action decision
 - Dribble; Shoot; Hold; Clear; Pass (10)

Here: Improvements over CMUnited-99

Outline

- RoboCup simulator
- Action Selection Architecture
- Leading Passes
- Force Field Control for Off-Ball Motion
- Results

- Distributed: each player a separate client
- Server models dynamics and kinematics
- Clients receive sensations, send actions

- Parametric actions: dash, turn, kick, say
- Abstract, noisy sensors, hidden state
 - Hear sounds from limited distance
 - See relative distance, angle to objects ahead
- $> 23^{10^9}$ states
- Limited resources: stamina
- Play occurs in real time (\approx human parameters)

Outline

- RoboCup simulator
- Action Selection Architecture
- Leading Passes
- Force Field Control for Off-Ball Motion
- Results

Motivation

Decisions based on a Value Function

- $v(s) \equiv$ expected reward from state s(RL)
- $P(s'|s, a) \equiv$ probability of outcome s' when selecting option (action) a from s
- Select option with highest

$$\sum_{s'} P(s'|s,a) v(s')$$

Options

An option can be scored and executed

- Execute the option with the highest score
- Scoring:
 - $-p_s \equiv$ probability of success
 - $-v_s, v_f \equiv$ values of succeeding, failing
 - Score: $p_s v_s + (1 p_s) v_f$
 - value function currently hand-written
 - Scoring across options must be comparable

Aside: Soft Boolean Expressions

Avoid discontinuities

• $x <^{\delta} y \in [0, 1]$ (continuous)

$$x = y \Rightarrow x <^{\delta} y = 1/2$$

 $x << 0 \Rightarrow x <^{\delta} y \sim 0$
 $x >> 1 \Rightarrow x <^{\delta} y \sim 1$

- if*(p, x, y) assumes $p \in [0, 1]$ $if^*(p, x, y) \equiv px + (1 p)y$
 - Often write if* $(x <^{\delta} y, z, w)$.

Pass Option

- Consider hundreds of passes:
 - angle increments of 4°
 - speed increments of 0.2m/sec
- $I_t(I_o) \equiv$ teammate (opponent) interception time
 - Approximate, fast computation
- Score: larger margin \Rightarrow larger p_s

$$p_s = if^*(I_t < ^5 I_o, .9, 0)$$

- \bullet v_s based on ball's predicted location after pass
- $\bullet v_f = 0$

Other Options

Shot Option: kick towards a point in the goal

- $-p_s$ related only to I_o
- $-v_{s}>>0$
- $-v_{f}=0$

Clear Option: kick the ball down the field

- $-p_s$ related only to I_o
- $-v_{s} > 0$
- $-v_{f}=0$

Others: dribble, send, hold, cross, ...

Difficult to calibrate many

Leading Passes

CMUnited-99: only direct passes

Now: hundreds considered

- Usually a pass option is selected
- Many leading passes seen

Movement without the ball is also crucial

CMUnited-99: SPAR

- Forces over limited regions
- Boundaries treated as hard constraints

Outline

- RoboCup simulator
- Action Selection Architecture
- Leading Passes
- Force Field Control for Off-Ball Motion
- Results

Movement Off the Ball

In principle: derivative of value function

Here: vector sum of force fields

 $d_b \equiv \text{distance of the player to the ball}$ $F \equiv B + O + \text{if}^*(d_b <^{10} 20, T + C, S)$

Force Fields

Bounds-Repellent (B): Stay on the field

Offsides-Repellent (O): Stay on-sides

Strategic (S): Stay about 20m from teammates

Tactical (T): But not too close

Get-clear (C): Move away from "key" defender

Results

- Keepaway vs. CMUnited-99
 - Goal: maintain possession
 - No offensive or defensive reasoning
- Possession time in 95% confidence intervals

Program	Possession Time	Mean Ball x Position
CMUnited-99	5.7-6.6 sec	-19.5
New Team	16.9-18.7 sec	-33.6

Very insensitive to most parameters

Varying S

 S^b : Force of unit magnitude towards the ball

 S^d : Force downfield

$$S^*: S, S + S^b, S + S^d, \text{ or } S + S^b + S^d$$

$$F \equiv B + O + if^*(d_b <^{10} 20, T + C, S^*)$$

Program	Possession Time	Mean Ball x Position
CMUnited	5.7-6.6	-19.5
S	16.9-18.7	-33.6
$S + S^b$	24.8-27.9	-35.9
$S + S^d$	22.2-25.2	25.7
$S + S^b + S^d$	23.7-26.8	26.6

Overall Results

- CMUnited-99 vs. CMUnited-99: **0.3 0.3**
- New Team vs. CMUnited-99: 2.5 0.3

RoboCup-2000 Competition

- ATT-CMUnited-2000: 3rd place
 - Stone, Riley, McAllester, Veloso
 - Also included dynamic set plays

[Riley & Veloso, 2001]

- 35-team field; Total score: 26–11 (8 games)

Summary

- An option-based action-selection architecture
- Leading Passes in RoboCup soccer
- Force Field Control for Off-Ball Motion

Related Work

- Samba [Riekki & Roenig, '98]: force fields for action selection
- SPAR [Veloso et al., '99]: limited regions, hard constraints

Future Work

• Learn the option value functions using RL