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Reinforcement Learning

action
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{ Environment ]

* Task: Maximize rewards in an unknown environment

* Only given: the state-action interface

* Much research: learn policies given an arbitrary interfaces
* QOur research: discover interfaces that are easier to learn
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Value-Based RL

4 )

State

Reward

- Agent

Action

N J
Learn: a control policy

“What action should | choose In each state?”
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Value-Based RL
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“How much reward can | earn starting at s by choosing a?”
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Value-Based RL
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In practice: high-dimensional state spaces
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Value-Based RL
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State abstraction: ignore the irrelevant dimensions
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State abstraction as qualitative knowledge

* Traditional sources of abstraction
° Prior knowledge from a human
© Computation from a given model
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State abstraction as qualitative knowledge

* Traditional sources of abstraction
° Prior knowledge from a human
© Computation from a given model

* Automatic discovery?
© But discovering structure is harder than learning policies
° QOur approach: knowledge transfer

1. Discover abstractions in easy domains
2. Transfer abstractions to hard domains
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Policy irrelevance: A new basis for state abstraction

When should we ignore a feature?

* Prior work
o ... If the states share the same abstract one-step model.
© Requires the true model of the environment
° Depends on the global abstraction

|
Nicholas K. Jong and Peter Stone, Learning Agents Research Group — p.5/20



Policy irrelevance: A new basis for state abstraction

When should we ignore a feature?

* Prior work
o ... If the states share the same abstract one-step model.
© Requires the true model of the environment
° Depends on the global abstraction

* Our work
o ... If the states share the same optimal action.
© Requires a learned policy for the environment
° Independent of abstraction at other states
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The Taxi domain

®* Four features . .

° Taxi x coordinate a
° Taxi y coordinate

o Current passenger location r
© Passenger destination
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The Taxi domain

®* Four features . .

° Taxi x coordinate

° Taxi y coordinate

o Current passenger location

© Passenger destination r

* Six actions: North, South, East, West, Pick Up, Put Down
* Optimal policy:

© Navigate to the passenger’s location

° Pick up the passenger

© Navigate to the passenger’s destination
° Put down the passenger
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Policy irrelevance in the Taxi domain

Relevance of the passenger destination. ..
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Policy irrelevance in the Taxi domain

Relevance of the passenger destination. . .
* When the passenger is not inside the taxi
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Policy irrelevance in the Taxi domain

Relevance of the passenger destination. ..
* When the passenger is not inside the taxi
* When the passenger is inside the taxi
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Policy irrelevance in the Taxi domain

Relevance of the passenger destination. . .
* When the passenger is not inside the taxi
* When the passenger is inside the taxi
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Policy irrelevance with real data

Relevance of the passenger destination. ..
* When the policy is learned from data
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Policy irrelevance with real data

Relevance of the passenger destination. ..
* When the policy is learned from data
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Policy irrelevance with real data

Relevance of the passenger destination. ..

When the policy is learned from data
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Policy irrelevance with real data

Relevance of the passenger destination. ..
When the policy is learned from data
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Policy irrelevance from action-value comparisons

Q(s',a) > Q(s', a)

When should we ignore a set of features F' at a state s?
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Policy irrelevance from action-value comparisons

Va' Q(s',a) > Q(s',d’)

e Action a is better than action «’ at state s’
* Action a is optimal at state s’

When should we ignore a set of features F' at a state s?
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Policy irrelevance from action-value comparisons

Vs' € [s]lp Va' Q(s',a) > Q(s',d)

* Action a is better than action o’ at state s’
* Action a is optimal at state s’
* Action a is optimal at every state s’ € [s|g

When should we ignore a set of features F' at a state s?

([s|F is the set of states obtained from s by varying over F')
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Policy irrelevance from action-value comparisons

Jda Vs’ € [s]p Va' Q(s',a) > Q(s',d)

* Action « is better than action «’ at state s’
* Action a is optimal at state s’

* Action a is optimal at every state s’ € [s|g
* Some action is optimal at every s’ € [s]g
* Features F' are policy irrelevant at s

When should we ignore a set of features F' at a state s?

([s|F is the set of states obtained from s by varying over F')
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Robust action-value comparison via sampling

Qs a) > Q(s', d')
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Robust action-value comparison via sampling
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Q(s',a) > Q(', a')

* Compare samples of estimates, not individual estimates!
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Robust action-value comparison via sampling
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Q(s',a) > Q(', a')

* Compare samples of estimates, not individual estimates!

* Method 1: Statistical hypothesis testing
© Solve task repeatedly with a value-based RL algorithm
° Low computational but high sample complexity
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Robust action-value comparison via sampling

{?

Q(s',a) > Q(', a')

* Compare samples of estimates, not individual estimates!

* Method 1: Statistical hypothesis testing
© Solve task repeatedly with a value-based RL algorithm
° Low computational but high sample complexity

* Method 2: Monte Carlo simulation
© Construct a Bayesian model from an experience trace
° Low sample but high computational complexity
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Partial state abstractions

Are features F' relevant at state s?

l

At what states Is each set of features relevant?

* Train a binary classifier for certain sets of features
* Learn when each set of features is irrelevant
* Naive application: ignore F' at classified states
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Transferring abstractions to novel domains

* Sources of error for straightforward state aggregation
o Statistical testing error

°o Generalization error of the learned classifiers
° Novelty in the transfer domain
° Disruption of value-function semantics!
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Transferring abstractions to novel domains
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Transferring abstractions to novel domains

Sources of error for straightforward state aggregation
Statistical testing error
Generalization error of the learned classifiers
Novelty in the transfer domain
Disruption of value-function semantics!
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Transferring abstractions to novel domains

* Sources of error for straightforward state aggregation
o Statistical testing error

© Generalization error of the learned classifiers
° Novelty in the transfer domain
° Disruption of value-function semantics!
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Temporal abstraction

* One abstract action comprises a sequence of actions
* AKA subroutines, options, subtasks
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Temporal abstraction

* One abstract action comprises a sequence of actions
* AKA subroutines, options, subtasks

* Prior research: “Achieve this subgoal state”

* Our research: “Ignore these features”
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Temporal abstraction

* One abstract action comprises a sequence of actions
* AKA subroutines, options, subtasks

* Prior research: “Achieve this subgoal state”

* Our research: “Ignore these features”

* Safe encapsulation of state abstractions into actions
* Learn when to apply discovered state abstractions!

y v y v
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Hierarchies of state and temporal abstractions

e ™
x—coordinate Passenger
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Hierarchies of state and temporal abstractions
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Hierarchies of state and temporal abstractions
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Hierarchies of state and temporal abstractions
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Results in the Taxi domain

* QOriginal 5 x 5 domain
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Results in the Taxi domain

* Original 5 x 5 domain
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Conclusions

* Abstraction discovery as problem reformulation

* A new basis for state abstraction: policy irrelevance
o Statistical testing methods
° Trajectory-based discovery algorithm

e Safe transfer of state abstractions to novel domains
° Encapsulation inside temporal abstractions
© Synergy of temporal and state abstractions
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Future work

* Adjusting abstraction-termination conditions
* Detection of dynamic domains

* Application to larger domains
© Function approximation
© Model-based RL algorithms

* Recursive abstraction discovery
© Discovery of hierarchy
© Dynamic state abstraction
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Future work: discovery of hierarchy
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The discovery algorithm

Which feature sets F' to test at what states s?

|
Nicholas K. Jong and Peter Stone, Learning Agents Research Group — p.19/20



The discovery algorithm

Which feature sets F' to test at what states s?

* For given state s, test small feature sets F' first and prune

|
Nicholas K. Jong and Peter Stone, Learning Agents Research Group — p.19/20



The discovery algorithm

Which feature sets F' to test at what states s?

* For given state s, test small feature sets F' first and prune

S
Fq Yes
F5 no
F3 Yes
i 9

Fi 3

Fo 3

Fi23
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The discovery algorithm

Which feature sets F' to test at what states s?

* For given state s, test small feature sets F' first and prune

S
Fq Yes
F5 no
F3 Yes
i 9 no
Fi 3

F5 3 no

Fi23 no
|
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The discovery algorithm

Which feature sets F' to test at what states s?

* For given state s, test small feature sets F' first and prune

S
Fq Yes
F5 no
F3 Yes
F172 no
F173 no
F2 3 no

Fi23 no
|
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The discovery algorithm

Which feature sets F' to test at what states s?

* For given state s, test small feature sets F' first and prune
e Sample states s from solution trajectories

S1 S92 S3 S4 S5 S6
F Yes
F5 no
F3 Yes
F1’2 no
F1’3 no
F2 3 no

Fi23 no
|
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The discovery algorithm

Which feature sets F' to test at what states s?

* For given state s, test small feature sets F' first and prune

e Sample states s from solution trajectories

S1
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The discovery algorithm

Which feature sets F' to test at what states s?

* For given state s, test small feature sets F' first and prune

e Sample states s from solution trajectories

® Construct a binary classification problem for each F
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Some abstractions discovered in the Taxi domain

1. Taxi’s z-coordinate:
(&) y = 1 A passenger in taxi A destination Red = irrelevant
(b) otherwise, relevant

2. Taxi's y-coordinate:
(&) x = 4 A passenger in taxi = Irrelevant
(b) otherwise, relevant

3. Passenger’s destination:
(&) passenger in taxi = relevant
(b) otherwise, irrelevant

4. Passenger’s location and destination:
@ (x=1Ay=2)V(xr=1Ay=1)= irrelevant
(b) otherwise, relevant
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Some abstractions discovered in the Taxi domain

1. Taxi’s z-coordinate:
(&) y = 1 A passenger in taxi A destination Red = irrelevant
(b) otherwise, relevant

2. Taxi's y-coordinate:
(&) x = 4 A passenger in taxi = Irrelevant
(b) otherwise, relevant

3. Passenger’s destination: GOOD
(&) passenger in taxi = relevant
(b) otherwise, irrelevant

4. Passenger’s location and destination:
@ (x=1Ay=2)V(xr=1Ay=1)= irrelevant
(b) otherwise, relevant
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Some abstractions discovered in the Taxi domain

1. Taxi’s xz-coordinate: BAD: testing or classification error!
(&) y = 1 A passenger in taxi /A destination Red = irrelevant
(b) otherwise, relevant

2. Taxi's y-coordinate: BAD: testing or classification error!
(&) x = 4 A passenger in taxi = Irrelevant
(b) otherwise, relevant

3. Passenger’s destination: GOOD
(&) passenger in taxi = relevant
(b) otherwise, irrelevant

4. Passenger’s location and destination: BAD: task-specific!
(@ (z=1Ay=2)V(xr=1Ay=1)=irrelevant
(b) otherwise, relevant
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