CS394R Reinforcement Learning: Theory and Practice Fall 2007

Peter Stone

Department of Computer Sciences
The University of Texas at Austin

October 11, 2007

Good Afternoon Colleagues

Good Afternoon Colleagues

Are there any questions?

Registering for the course

- Registering for the course
- Nice responses!

- Registering for the course
- Nice responses!
 - Length and content good

- Registering for the course
- Nice responses!
 - Length and content good
 - Be clear and specific

- Registering for the course
- Nice responses!
 - Length and content good
 - Be clear and specific
 - Look for programming assignment opportunities

- Registering for the course
- Nice responses!
 - Length and content good
 - Be clear and specific
 - Look for programming assignment opportunities
 - I have author's responses to exercises

- Registering for the course
- Nice responses!
 - Length and content good
 - Be clear and specific
 - Look for programming assignment opportunities
 - I have author's responses to exercises
- Programming language

- Registering for the course
- Nice responses!
 - Length and content good
 - Be clear and specific
 - Look for programming assignment opportunities
 - I have author's responses to exercises
- Programming language
- Today: self-introductions, discussion leader assignments

Reduced Formalism

Knowns:

- $S = \{Blue, Red, Green, Black, ...\}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

$$s_0, a_0, r_0, s_1, a_1, r_1, s_2, \dots$$

Unknowns:

- ullet $\mathcal{R}:\mathcal{S} imes\mathcal{A}\mapsto \mathbb{R}$
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

$$r_i = \mathcal{R}(s_i, a_i)$$
 $s_{i+1} = \mathcal{T}(s_i, a_i)$

- Agent's perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses

- Agent's perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals

- Agent's perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals
 - Practice: need to pick the represenation, reward

- Agent's perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals
 - Practice: need to pick the representation, reward
 - videos

- Agent's perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals
 - Practice: need to pick the representation, reward
 - videos
- Methodical approach
 - Solid foundation rather than comprehensive coverage

- Agent's perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals
 - Practice: need to pick the representation, reward
 - videos
- Methodical approach
 - Solid foundation rather than comprehensive coverage
 - RL reading group

• What's a model?

- What's a model?
- Does speed of learning matter?

- What's a model?
- Does speed of learning matter?
- Distinguishing features (from supervised learning)?

- What's a model?
- Does speed of learning matter?
- Distinguishing features (from supervised learning)?
 - trial-error search, delayed reward
 - exploration vs. exploitation (chapt. 2)

- What's a model?
- Does speed of learning matter?
- Distinguishing features (from supervised learning)?
 - trial-error search, delayed reward
 - exploration vs. exploitation (chapt. 2)
- Learn just the policy, or also state representation?
- What about the reward function?

• Reward function vs. value function

- Reward function vs. value function
 - Tic-tac-toe example

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example
- Distinction with evolutionary methods?
 - Tic-tac-toe example

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example
- Distinction with evolutionary methods?
 - Tic-tac-toe example
 - Phil making breakfast example

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example
- Distinction with evolutionary methods?
 - Tic-tac-toe example
 - Phil making breakfast example
- Is evolutionary learning ever better?

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example
- Distinction with evolutionary methods?
 - Tic-tac-toe example
 - Phil making breakfast example
- Is evolutionary learning ever better?
- Tic-tac-toe example: what are the converged values?

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example
- Distinction with evolutionary methods?
 - Tic-tac-toe example
 - Phil making breakfast example
- Is evolutionary learning ever better?
- Tic-tac-toe example: what are the converged values?
 - on-policy, vs. off-policy updates