CS394R Reinforcement Learning: Theory and Practice Fall 2007

Peter Stone

Department of Computer Sciences
The University of Texas at Austin

Good Afternoon Colleagues

Are there any questions?

Logistics

Class survey — due Thursday

Logistics

- Class survey due Thursday
- Programming assignments, final project

TD on week 0 task

Equiprobable random policy

TD on week 0 task

- Equiprobable random policy
- Compare with MC

TD on week 0 task

- Equiprobable random policy
- Compare with MC
- (book slides)

- Week 0 example
 - (Remember no access to real model)
 - $-\alpha=.1$, ϵ -greedy $\epsilon=.75$, break ties in favor of \rightarrow

- Week 0 example
 - (Remember no access to real model)
 - $-\alpha=.1$, ϵ -greedy $\epsilon=.75$, break ties in favor of \rightarrow
 - Where did policy change?

- Week 0 example
 - (Remember no access to real model)
 - $-\alpha=.1$, ϵ -greedy $\epsilon=.75$, break ties in favor of \rightarrow
 - Where did policy change?
- How do their convergence guarantees differ?

- Week 0 example
 - (Remember no access to real model)
 - $-\alpha=.1$, ϵ -greedy $\epsilon=.75$, break ties in favor of \rightarrow
 - Where did policy change?
- How do their convergence guarantees differ?
 - Sarsa depends on policy' dependence on Q:
 - Policy must converge to greedy

- Week 0 example
 - (Remember no access to real model)
 - $-\alpha=.1$, ϵ -greedy $\epsilon=.75$, break ties in favor of \rightarrow
 - Where did policy change?
- How do their convergence guarantees differ?
 - Sarsa depends on policy' dependence on Q:
 - Policy must converge to greedy
 - Q-learning value function converges to Q^{st}
 - As long as all state-action pairs visited infinitely
 - And step-size satisfies (2.8)

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example
- Can be Off-policy

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example
- Can be Off-policy
- R-learning: why negative in 6.17?

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example
- Can be Off-policy
- R-learning: why negative in 6.17?
- (Afterstates)