
Connectionist Models

Consider humans:

� Neuron switching time ~ :001 second

� Number of neurons ~ 10

10

� Connections per neuron ~ 10

4�5

� Scene recognition time ~ :1 second

� 100 inference steps doesn't seem like enough

!much parallel computation

Properties of arti�cial neural nets (ANN's):

�Many neuron-like threshold switching units

�Many weighted interconnections among units

� Highly parallel, distributed process

� Emphasis on tuning weights automatically
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When to Consider Neural Networks

� Input is high-dimensional discrete or real-valued

(e.g. raw sensor input)

� Output is discrete or real valued

� Output is a vector of values

� Possibly noisy data

� Form of target function is unknown

� Human readability of result is unimportant

Examples:

� Speech phoneme recognition [Waibel]

� Image classi�cation [Kanade, Baluja, Rowley]

� Financial prediction
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ALVINN drives 70 mph on highways
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Perceptron
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Decision Surface of a Perceptron
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But some functions not representable

� e.g., not linearly separable

� Therefore, we'll want networks of these...
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Perceptron training rule
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Where:

� t = c(~x) is target value

� o is perceptron output

� � is small constant (e.g., .1) called learning rate
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Perceptron training rule

Can prove it will converge

� If training data is linearly separable

� and � su�ciently small
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Gradient Descent

Gradient-Descent(training examples; �)

Each training example is a pair of the form

h~x; ti, where ~x is the vector of input values,

and t is the target output value. � is the

learning rate (e.g., .05).

� Initialize each w

i

to some small random value

� Until the termination condition is met, Do

{ Initialize each �w

i

to zero.

{ For each h~x; ti in training examples, Do

� Input the instance ~x to the unit and

compute the output o

� For each linear unit weight w

i

, Do
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Summary

Perceptron training rule guaranteed to succeed if

� Training examples are linearly separable

� Su�ciently small learning rate �

Linear unit training rule uses gradient descent

� Guaranteed to converge to hypothesis with

minimum squared error

� Given su�ciently small learning rate �

� Even when training data contains noise

� Even when training data not separable by H
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Multilayer Networks of Sigmoid Units

F1 F2

head hid who’d hood
... ...
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Sigmoid Unit
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Nice property:

d�(x)

dx

= �(x)(1 � �(x))

We can derive gradient decent rules to train

� One sigmoid unit

�Multilayer networks of sigmoid units !

Backpropagation

89 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satis�ed, Do

� For each training example, Do

1. Input the training example to the network

and compute the network outputs

2. For each output unit k
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More on Backpropagation

� Gradient descent over entire network weight

vector

� Easily generalized to arbitrary directed graphs

�Will �nd a local, not necessarily global error

minimum

{ In practice, often works well (can run multiple

times)

� Often include weight momentum �

�w

i;j

(n) = ��

j

x

i;j

+ ��w

i;j

(n� 1)

�Minimizes error over training examples

{Will it generalize well to subsequent

examples?

� Training can take thousands of iterations !

slow!

� Using network after training is very fast
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Learning Hidden Layer Representations

Inputs Outputs

A target function:

Input Output

10000000 ! 10000000

01000000 ! 01000000

00100000 ! 00100000

00010000 ! 00010000

00001000 ! 00001000

00000100 ! 00000100

00000010 ! 00000010

00000001 ! 00000001

Can this be learned??
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Learning Hidden Layer Representations

A network:

Inputs Outputs

Learned hidden layer representation:

Input Hidden Output

Values

10000000 ! .89 .04 .08 ! 10000000

01000000 ! .01 .11 .88 ! 01000000

00100000 ! .01 .97 .27 ! 00100000

00010000 ! .99 .97 .71 ! 00010000

00001000 ! .03 .05 .02 ! 00001000

00000100 ! .22 .99 .99 ! 00000100

00000010 ! .80 .01 .98 ! 00000010

00000001 ! .60 .94 .01 ! 00000001
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Over�tting in ANNs
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Neural Nets for Face Recognition

... ...

left strt rght up

30x32

inputs

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces
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Learned Hidden Unit Weights

... ...

left strt rght up

30x32

inputs

Learned Weights

Typical input images

http://www.cs.cmu.edu/�tom/faces.html
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Recurrent Networks
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