Connectionist Models

Consider humans:

- Neuron switching time ~ .001 second
- Number of neurons ~ 10¹⁰
- Connections per neuron $\sim 10^{4-5}$
- Scene recognition time ~ .1 second
- 100 inference steps doesn't seem like enough
- \rightarrow much parallel computation

Properties of artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

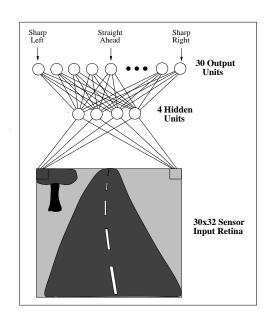
When to Consider Neural Networks

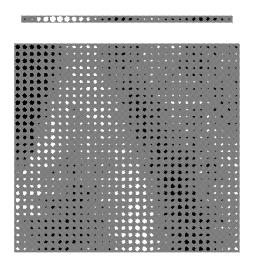
- Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of result is unimportant

Examples:

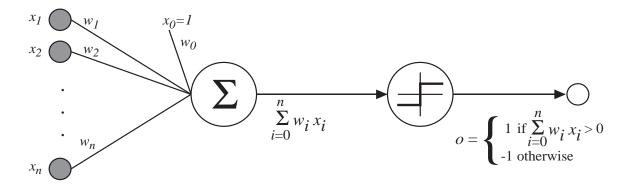
- Speech phoneme recognition [Waibel]
- Image classification [Kanade, Baluja, Rowley]
- Financial prediction

ALVINN drives 70 mph on highways





Perceptron

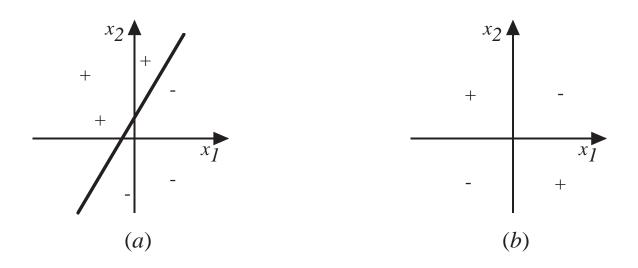


$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Decision Surface of a Perceptron



Represents some useful functions

• What weights represent $g(x_1, x_2) = AND(x_1, x_2)$?

But some functions not representable

- e.g., not linearly separable
- Therefore, we'll want networks of these...

Perceptron training rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t - o)x_i$$

Where:

- $t = c(\vec{x})$ is target value
- \bullet o is perceptron output
- \bullet η is small constant (e.g., .1) called $learning\ rate$

Perceptron training rule

Can prove it will converge

- If training data is linearly separable
- ullet and η sufficiently small

Gradient Descent

Gradient-Descent $(training_examples, \eta)$

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero.
 - For each $\langle \vec{x}, t \rangle$ in $training_examples$, Do
 - * Input the instance \vec{x} to the unit and compute the output o
 - * For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$$

- For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Summary

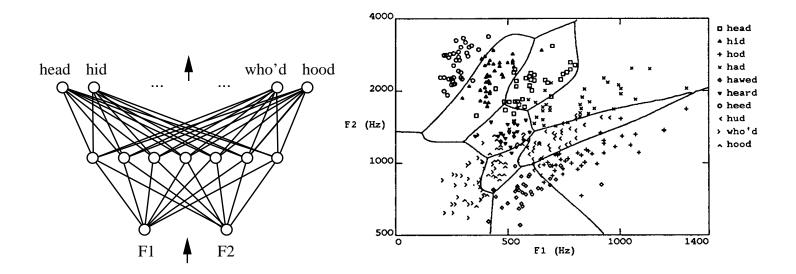
Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

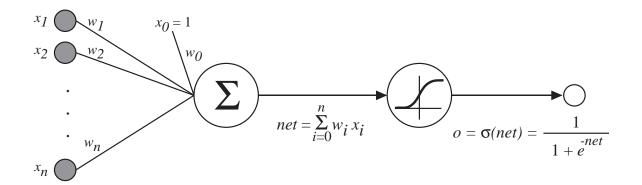
Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- ullet Given sufficiently small learning rate η
- Even when training data contains noise
- \bullet Even when training data not separable by H

Multilayer Networks of Sigmoid Units



Sigmoid Unit



 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1 + e^{-x}}$$

Nice property:
$$\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$$

We can derive gradient decent rules to train

- One sigmoid unit
- $Multilayer\ networks$ of sigmoid units \rightarrow Backpropagation

Backpropagation Algorithm

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
 - 1. Input the training example to the network and compute the network outputs
 - 2. For each output unit k

$$\delta_k \leftarrow o_k(1-o_k)(t_k-o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j x_{i,j}$$

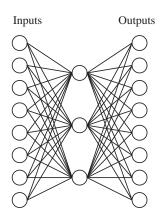
More on Backpropagation

- Gradient descent over entire *network* weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- \bullet Often include weight momentum α

$$\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$$

- Minimizes error over *training* examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations → slow!
- Using network after training is very fast

Learning Hidden Layer Representations



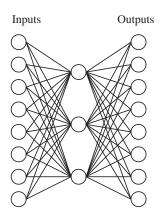
A target function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned??

Learning Hidden Layer Representations

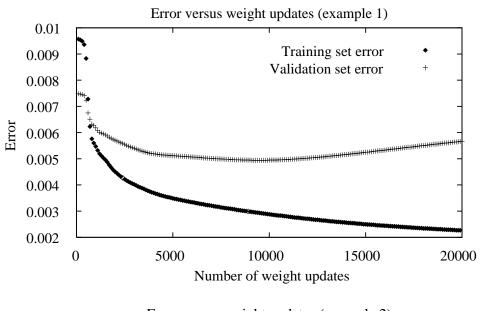
A network:

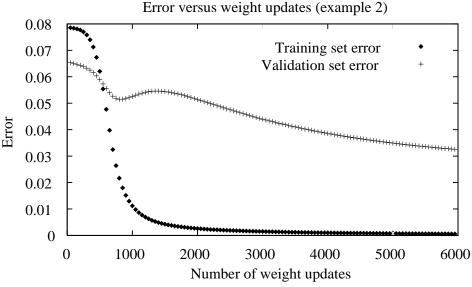


Learned hidden layer representation:

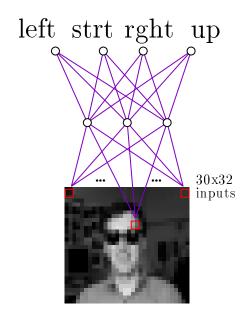
Input		Hidden			Output			
Values								
10000000	\rightarrow .89	0.04	.08	\rightarrow	10000000			
01000000	$\rightarrow .01$	1.11	.88	\rightarrow	01000000			
00100000	$\rightarrow .01$.97	.27	\rightarrow	00100000			
00010000	\rightarrow .99	.97	.71	\rightarrow	00010000			
00001000	$\rightarrow .03$	3 .05	.02	\rightarrow	00001000			
00000100	$\rightarrow .22$	2 .99	.99	\rightarrow	00000100			
00000010	\rightarrow .80	.01	.98	\rightarrow	00000010			
00000001	\rightarrow .60	.94	.01	\rightarrow	00000001			

Overfitting in ANNs





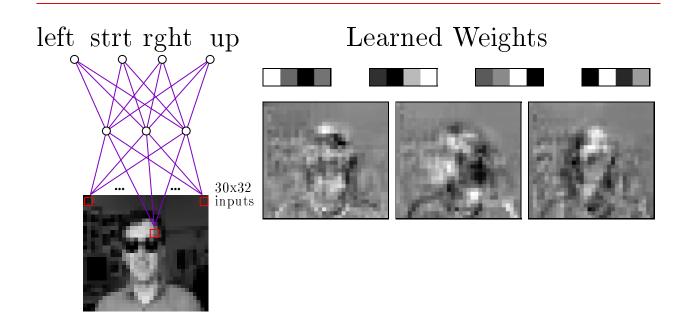
Neural Nets for Face Recognition



Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Learned Hidden Unit Weights

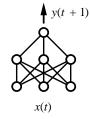




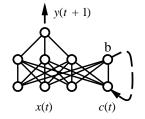
Typical input images

http://www.cs.cmu.edu/~tom/faces.html

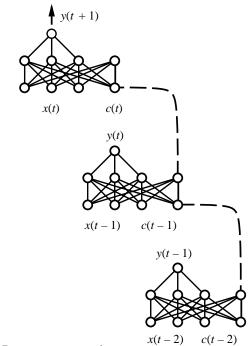
Recurrent Networks



(a) Feedforward network



(b) Recurrent network



(c) Recurrent network unfolded in time