
CS394R
Reinforcement Learning:

Theory and Practice

Peter Stone

Department of Computer Science
The University of Texas at Austin



Good Morning Colleagues

Peter Stone



Good Morning Colleagues

• Are there any questions?

Peter Stone



Logistics

• Reading responses

Peter Stone



Logistics

• Reading responses

• Next week’s readings

Peter Stone



Logistics

• Reading responses

• Next week’s readings

• The math is important

Peter Stone



Logistics

• Reading responses

• Next week’s readings

• The math is important

• Use piazza

Peter Stone



Chapter 3
• Defines the problem

Peter Stone



Chapter 3
• Defines the problem

• Introduces some important notation and concepts.

Peter Stone



Chapter 3
• Defines the problem

• Introduces some important notation and concepts.

− Returns
− Markov property
− State/action value functions
− Bellman equations

Peter Stone



Chapter 3
• Defines the problem

• Introduces some important notation and concepts.

− Returns
− Markov property
− State/action value functions
− Bellman equations
− Get comfortable with them!

Peter Stone



Chapter 3
• Defines the problem

• Introduces some important notation and concepts.

− Returns
− Markov property
− State/action value functions
− Bellman equations
− Get comfortable with them!
− qπ(s, a) =

Peter Stone



Chapter 3
• Defines the problem

• Introduces some important notation and concepts.

− Returns
− Markov property
− State/action value functions
− Bellman equations
− Get comfortable with them!
− qπ(s, a) =

− Backup diagrams (p. 62)

Peter Stone



Chapter 3
• Defines the problem

• Introduces some important notation and concepts.

− Returns
− Markov property
− State/action value functions
− Bellman equations
− Get comfortable with them!
− qπ(s, a) =

− Backup diagrams (p. 62)

• Solution methods start in Chapter 4

Peter Stone



Chapter 3
• Defines the problem

• Introduces some important notation and concepts.

− Returns
− Markov property
− State/action value functions
− Bellman equations
− Get comfortable with them!
− qπ(s, a) =

− Backup diagrams (p. 62)

• Solution methods start in Chapter 4

− What does it mean to solve an RL problem?

Peter Stone
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Formulating the RL problem

• Art more than science

• States, actions, rewards

• Rewards: no hints on how to solve the problem

• Discounted vs. non-discounted

• Episodic vs. continuing
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Value functions
• Consider the week 0 environment

• For some s, what is V (s)?

• OK - consider the policy we ended with

• Now, for some s, what is V (s)?

• Construct V in undiscounted, episodic case

• Construct Q in undiscounted, episodic case

• What if it’s discounted?

• What if it’s continuing?

• Continuing tasks without discounting?

• Exercises 3.9, 3.10, 3.16
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Markov property
• What is it?

• Does it hold in the real world?

− Are any systems "fundamentally" non-Markovian?
− What if there’s a time horizon?

• It’s an ideal

− Will allow us to prove properties of algorithms
− Algorithms may still work when not provably correct
− Could you compensate? Do algorithms change?
− If not, you may want different algorithms (Monte Carlo)

• Exercise 3.6 (broken vision system)
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Policy Evaluation

• V π exists and is unique if γ < 1 or termination guaranteed
for all states under policy π.

• Policy evaluation converges under the same conditions

• Policy evaluation on the week 0 problem

− undiscounted, episodic
− Are the conditions met?

• Exercises 4.1, 4.2
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Value Iteration on Week 0 problem

• Show the new policy at each step

− Not actually to compute policy
− Break policy ties with equiprobable actions
− No stochastic transitions

• How would policy iteration proceed in comparison?

− More or fewer policy updates?
− True in general?

Peter Stone
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Chapter 4 Summary

• Chapter 4 treats bootstrapping with a model

− Next: no model and no bootstrapping
− Then: no model, but bootstrapping

Peter Stone
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