CS394R Reinforcement Learning: Theory and Practice

Peter Stone

Department of Computer Science The University of Texas at Austin

Good Morning Colleagues

• Are there any questions?

• Do programming assignments!

- Do programming assignments!
- Not into piazza?

- Do programming assignments!
- Not into piazza?
- Next week's readings

- Do programming assignments!
- Not into piazza?
- Next week's readings
 - Multi-step bootstrapping

- Do programming assignments!
- Not into piazza?
- Next week's readings
 - Multi-step bootstrapping
 - "Planning" and learning (tabular models)

- Episodic, undiscounted
- Equiprobable random action in start state, then prefer right

- Episodic, undiscounted
- Equiprobable random action in start state, then prefer right
- State values

- Episodic, undiscounted
- Equiprobable random action in start state, then prefer right
- State values
- Action values

- Episodic, undiscounted
- Equiprobable random action in start state, then prefer right
- State values
- Action values
 - Why action values preferable?

- Episodic, undiscounted
- Equiprobable random action in start state, then prefer right
- State values
- Action values
 - Why action values preferable?
- Relationship to n-armed bandit?

- MC doesn't need a (full) model
 - Can learn from actual or simulated experience

- MC doesn't need a (full) model
 - Can learn from actual or simulated experience
- DP takes advantage of a full model
 - Doesn't need **any** experience

- MC doesn't need a (full) model
 - Can learn from actual or simulated experience
- DP takes advantage of a full model
 - Doesn't need **any** experience
- MC expense independent of number of states

- MC doesn't need a (full) model
 - Can learn from actual or simulated experience
- DP takes advantage of a full model
 - Doesn't need **any** experience
- MC expense independent of number of states
- No bootstrapping in MC

- MC doesn't need a (full) model
 - Can learn from actual or simulated experience
- DP takes advantage of a full model
 - Doesn't need **any** experience
- MC expense independent of number of states
- No bootstrapping in MC
 - Not harmed by Markov violations

• Why is every visit trickier to analyze?

- Why is every visit trickier to analyze?
- Every visit still converges to V^π
 - Singh and Sutton '96 paper
 - Revisited in Chapter 12 (?) (replacing traces)

• Q more useful than V without a model

- Q more useful than V without a model
- But to get it need to explore

- Q more useful than V without a model
- But to get it need to explore
- Exploring starts vs. stochastic policies

- Q more useful than V without a model
- But to get it need to explore
- Exploring starts vs. stochastic policies
 - $-\pi^*$ always deterministic? (if not, why ES?)

- Q more useful than V without a model
- But to get it need to explore
- Exploring starts vs. stochastic policies
 - $-\pi^*$ always deterministic? (if not, why ES?)
 - Does ES converge?

- Q more useful than V without a model
- But to get it need to explore
- Exploring starts vs. stochastic policies
 - $-\pi^*$ always deterministic? (if not, why ES?)
 - Does ES converge? Tsitsiklis:

We settle the above mentioned open problem, for the case of a discounted cost criterion, under the assumption that every state-action pair is used to initialize the observed trajectories with the same frequency.

- Q more useful than V without a model
- But to get it need to explore
- Exploring starts vs. stochastic policies
 - $-\pi^*$ always deterministic? (if not, why ES?)
 - Does ES converge? Tsitsiklis:
 - We settle the above mentioned open problem, for the case of a discounted cost criterion, under the assumption that every state-action pair is used to initialize the observed trajectories with the same frequency.
 - Why consider off-policy methods?

• Importance sampling slides

- Importance sampling slides
- Change week 0 policy from equiprobable in start state to 50/25/25

- Importance sampling slides
- Change week 0 policy from equiprobable in start state to 50/25/25
- Why only learn from tail on p. 115?

- Equiprobable random policy
 - Values initialized to 0
 - 3 trajectories

- Equiprobable random policy
 - Values initialized to 0
 - 3 trajectories
- Compare with MC

- Week 0 example
 - (Remember no access to real model)
 - $\ \alpha = .1, \epsilon\text{-greedy} \ \epsilon = .75,$ break ties in favor of \rightarrow

- Week 0 example
 - (Remember no access to real model)
 - $-\alpha = .1, \epsilon$ -greedy $\epsilon = .75$, break ties in favor of \rightarrow
 - Where did policy change?

- Week 0 example
 - (Remember no access to real model)
 - $\ \alpha = .1, \epsilon\text{-greedy} \ \epsilon = .75,$ break ties in favor of \rightarrow
 - Where did policy change?
- How do their convergence guarantees differ?

- Week 0 example
 - (Remember no access to real model)
 - $\ \alpha = .1, \epsilon\text{-greedy} \ \epsilon = .75,$ break ties in favor of \rightarrow
 - Where did policy change?
- How do their convergence guarantees differ?
 - Sarsa depends on policy's dependence on Q:
 - Policy must converge to greedy

- Week 0 example
 - (Remember no access to real model)
 - $\ \alpha = .1, \epsilon\text{-greedy} \ \epsilon = .75,$ break ties in favor of \rightarrow
 - Where did policy change?
- How do their convergence guarantees differ?
 - Sarsa depends on policy's dependence on Q:
 - Policy must converge to greedy
 - Q-learning value function converges to Q^*
 - As long as all state-action pairs visited infinitely
 - And step-size satisfies stochastic convergence equations

• Why does Q-learning learn to hug the cliff? (p. 139)

