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Logistics

• Do programming assignments!

• Not into piazza?

• Next week’s readings

− Multi-step bootstrapping
− “Planning” and learning (tabular models)

Peter Stone
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Monte Carlo on week 0 task

• Episodic, undiscounted

• Equiprobable random action in start state, then prefer
right

• State values

• Action values
− Why action values preferable?

• Relationship to n-armed bandit?
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Relationship to DP

• MC doesn’t need a (full) model

− Can learn from actual or simulated experience

• DP takes advantage of a full model

− Doesn’t need any experience

• MC expense independent of number of states

• No bootstrapping in MC

− Not harmed by Markov violations

Peter Stone
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First/Every Visit

• Why is every visit trickier to analyze?

• Every visit still converges to V π

− Singh and Sutton ’96 paper
− Revisited in Chapter 12 (?) (replacing traces)
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Control

• Q more useful than V without a model

• But to get it need to explore

• Exploring starts vs. stochastic policies
− π∗ always deterministic? (if not, why ES?)
− Does ES converge? Tsitsiklis:

We settle the above mentioned open problem, for
the case of a discounted cost criterion, under the
assumption that every state-action pair is used to
initialize the observed trajectories with the same
frequency.

− Why consider off-policy methods?

Peter Stone
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Learning off policy

• Importance sampling slides

• Change week 0 policy from equiprobable in start state to
50/25/25

• Why only learn from tail on p. 115?

Peter Stone
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TD on week 0 task

• Equiprobable random policy

− Values initialized to 0
− 3 trajectories

• Compare with MC

Peter Stone
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SARSA vs. Q

• Week 0 example

− (Remember no access to real model)
− α = .1, ε-greedy ε = .75, break ties in favor of→
− Where did policy change?

• How do their convergence guarantees differ?

− Sarsa depends on policy’s dependence on Q:
− Policy must converge to greedy
− Q-learning value function converges to Q∗

− As long as all state-action pairs visited infinitely
− And step-size satisfies stochastic convergence equations
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More SARSA vs. Q

• Why does Q-learning learn to hug the cliff? (p. 139)

Peter Stone


