CS 394R Reinforcement Learning: Theory and Practice

Sanmit Narvekar

Department of Computer Science University of Texas at Austin

Good Morning Colleagues

Are there any questions?

Logistics

• First 3 assignments due next Friday by midnight

Project proposals due next Thursday 9:30am

Outline

Get a feel for how to approach a complex RL problem

Keepaway Domain

Group Activity!

One approach and extensions

Keepaway: A Subtask of 2D Simulated Soccer

- Play in a small area
- Keepers try to keep the ball
- Takers try to get the ball

• Episode:

- Players and ball reset randomly
- Ball starts near a keeper
- Ends when taker gets the ball or ball goes out

• Performance measure: average possession duration

Keepaway

Sensations

- Your position
- Teammate and opponent positions
- Ball position
- Landmark positions

Raw Actions

- Move(x, y)
- Kick(x, y, power)

- Higher level actions/skills
 - HoldBall, PassBall(k), GoToBall, GetOpen

Some questions to think about...

- State/Action space?
- Reward function?
- Function approximation?
- MDP formulation
 - Each agent learns separately?
 - Each agent shares a set of learned skills?
- What will be learned, and what will be hand-coded?
 - If it's a mix, what will the final policy look like?
- Keep the learning problem tractable!

One approach...

- Reinforcement Learning for RoboCup-Soccer Keepaway Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. Adaptive Behavior, 2005.
- Shivaram Kalyanakrishnan and Peter Stone. Learning Complementary Multiagent Behaviors: A Case Study. RoboCup 2009: Robot Soccer World Cup XIII, pp. 153–165, Springer Verlag, 2010.

Extension: Transfer Learning

4v3

5v4