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2-player zero-sum discrete finite 
deterministic games of perfect information

What do these terms mean?

• Two player: Duh!

• Zero-sum: In any outcome of any game, Player A’s gains 
equal player B’s losses.  (Doesn’t mean fairness:  “On average, two equal 
players will win or lose equal amounts” not necessary for zero-sum.)

• Discrete: All game states and decisions are discrete values.

• Finite: Only a finite number of states and decisions.

• Deterministic: No chance (no die rolls).

• Games: See next page

• Perfect information: Both players can see the state, and 
each decision is made sequentially (no simultaneous moves).
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Which of these are: 2-player zero-sum discrete finite 
deterministic games of perfect information

• Two player: Duh!

• Zero-sum: In any outcome of any 
game, Player A’s gains equal player B’s 
losses. 

• Discrete: All game states and decisions 
are discrete values.

• Finite: Only a finite number of states and 
decisions.

• Deterministic: No chance (no die 
rolls).

• Games: See next page

• Perfect information: Both players 
can see the state, and each decision is 
made sequentially (no simultaneous 
moves).

Not finite

Multiplayer
One player

Stochastic
Hidden 

Information

Involves Improbable 

Animal Behavior
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Supervised Learning

Inputs Outputs

Training Info  =  desired (target) outputs

Error  =  (target output  –  actual output)

Supervised 

Learning 

System

4
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Reinforcement Learning

Outputs (“actions”)

Training Info  =  evaluations (“rewards” / “penalties”)

Objective:  get as much reward as possible

Inputs
Reinforcement 

Learning 

System

5
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Key Features of RL

• Learner is not told which actions to take

• Trial-and-Error search

• Possibility of delayed reward

• Sacrifice short-term gains for greater long-term 
gains

• The need to explore and exploit

• Considers the whole problem of a goal-directed 
agent interacting with an uncertain environment

6
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Reinforcement Learning

Supervised learning mature [WEKA]

For agents, reinforcement learning most appropriate

Environment

Agent
πPolicy   : S    A

action (a[t])
state (s[t])

reward (r[t+1])

− Foundational theoretical results
− Applications require innovations to scale up
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RL Theory

Success story: Q-learning converges to π∗ [Watkins, 89]

s[t]

r[t]

a[t−1]

s a

Q(s,a)

s[t−1]

a[t]
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RL Theory

Success story: Q-learning converges to π∗ [Watkins, 89]

s[t]

r[t]

a[t−1]

s a

Q(s,a)

s[t−1]

a[t]

− Table-based representation
− Visit every state infinitely often
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Function Approximation
In practice, visiting every state impossible
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Function Approximation
In practice, visiting every state impossible

s[t]

r[t]

a[t−1]

s a

Q(s,a)

s[t−1]

a[t]

Function approximation of value function

s[t]
a[t]

s[t−1]

s a

Q(s,a)

r[t]

a[t−1]

Theoretical guarantees harder to come by
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Batch Methods

In practice, often experience is scarce

s[t]
a[t]

s[t−1]

s a

Q(s,a)

r[t]

a[t−1]
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Batch Methods

In practice, often experience is scarce

s[t]
a[t]

s[t−1]

s a

Q(s,a)

r[t]

a[t−1]

Save transitions:

s[t]

r[t]
a[t]

s a

Q(s,a)

<r[i], s[i], a[i]> for i=0 to t−1
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Applications: Towards a Useful Tool

• Backgammon [Tesauro, ’94]
• Helicopter control [Ng et al., ’03]

• Adaptive treatment of epilepsy [Pineau et al., ’08]

• Invasive species management,
wildfire suppression [Dietterich et al., ’13]

• Google DeepMind beats human go champion, [Silver et al., ’16]
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Computer*Go*AI – Definition

s (state)

d+=+1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

=

(e.g.$we$can$represent$the$board$into$a$matrixHlike$form)

*#The#actual#model#uses#other#features#than#board#positions#as#wellAlphaGo slides created by Shane (Seungwhan) Moon



Computer*Go*AI*– Definition

s (state)

d+=+1 d+=+2

a (action)

Given+s,+pick+the+best+a

Computer+Go
Artificial+

Intelligence
s a s'



Computer*Go*AI – An*Implementation*Idea?
d+=+1 d+=+2

…

How$about$simulating$all$possible$board$positions?
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Computer*Go*AI*– An*Implementation*Idea?
d+=+1 d+=+2

…

d+=+3

…

…

…

…

… d+=+maxD

Process$the$simulation$until$the$game$ends,
then$report$win$/$lose$results

e.g. it$wins$13$times$if$the$next$stone$gets$placed$here

37,839$times

431,320$times

Choose$the$“next$action$/$stone”
that$has$the$most$winHcounts$in$the$fullHscale$simulation



This+is+NOT+possible;+it+is+said+the+possible+configurations+of+ the+board+exceeds+the+number+ of+atoms+in+the+universe



Key: To*Reduce Search*Space



Reducing*Search*Space

1.$Reducing$“action$candidates”$(Breadth$Reduction)

d+=+1 d+=+2

…

d+=+3

…

…

…

… d$=$maxD

Win?
Loss?

IF$there$is$a$model$that$can$tell$you$that$these$moves
are$not$common$/$probable$(e.g.$by$experts,$etc.)$…



Reducing*Search*Space

1.$Reducing$“action$candidates”$(Breadth$Reduction)

d+=+1 d+=+2

…

d+=+3

…

… d$=$maxD

Win?
Loss?

Remove$these$from$search$candidates$in$advance (breadth$reduction)



Reducing*Search*Space

2.$Position$evaluation$ahead$of$time$(Depth$Reduction)

d+=+1 d+=+2

…

d+=+3

…

… d$=$maxD

Win?
Loss?

Instead$of$simulating$until$the$maximum$depth ..



Reducing*Search*Space

2.$Position$evaluation$ahead$of$time$(Depth$Reduction)

d+=+1 d+=+2

…

d+=+3

…

V$=$1

V$=$2

V$=$10

IF$there$is$a$function$that$can$measure:
V(s):+ “board+evaluation+of+state+s”



Reducing*Search*Space

1. Reducing$“action$candidates”$(Breadth$Reduction)

2. Position$evaluation$ahead$of$time$(Depth$Reduction)



1.*Reducing*“action*candidates”

Learning:+P$($next$action$|$current$state$)

=$P$($a$|$s$)



1.*Reducing*“action*candidates”

(1) Imitating+expert+moves+(supervised+learning)

Current$State

Prediction$
Model

Next$State

s1 s2

s2 s3

s3 s4

Data:+Online+Go experts (5~9+dan)
160K games, 30M+board+positions



1.*Reducing*“action*candidates”

(1) Imitating+expert+moves+(supervised+learning)

Prediction$Model

Current$Board Next$Board



1.*Reducing*“action*candidates”

(1) Imitating+expert+moves+(supervised+learning)

Prediction$Model

Current$Board Next$Action

There$are$19$X$19$=$361
possible$actions
(with$different$probabilities)



1.*Reducing*“action*candidates”

(1) Imitating+expert+moves+(supervised+learning)

Prediction$Model

0 0+ 0 0 0+ 0 0 0 0
0 0+ 0 0 0 1 0 0 0
0 H1 0 0 1 H1 1 0 0
0 1 0 0 1 H1 0 0 0
0 0+ 0 0 H1 0 0 0 0
0 0+ 0 0 0+ 0 0 0 0
0 H1 0 0 0+ 0 0 0 0
0 0+ 0 0 0+ 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

s af:$s! a

Current$Board Next$Action



1.*Reducing*“action*candidates”

(1) Imitating+expert+moves+(supervised+learning)

Prediction$
Model

0 0+ 0 0 0+ 0 0 0 0
0 0+ 0 0 0 1 0 0 0
0 H1 0 0 1 H1 1 0 0
0 1 0 0 1 H1 0 0 0
0 0+ 0 0 H1 0 0 0 0
0 0+ 0 0 0+ 0 0 0 0
0 H1 0 0 0+ 0 0 0 0
0 0+ 0 0 0+ 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

s g:$s! p(a|s)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0++++++ 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.2 0.1 0 0
0 0 0 0 0 0.4$0.2 0 0
0 0 0 0 0 0.1+++ 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

p(a|s) aargmax

Current$Board Next$Action



1.*Reducing*“action*candidates”

(1) Imitating+expert+moves+(supervised+learning)

Prediction$
Model

0 0+ 0 0 0+ 0 0 0 0
0 0+ 0 0 0 1 0 0 0
0 H1 0 0 1 H1 1 0 0
0 1 0 0 1 H1 0 0 0
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0 0 0 0 0 0 0 0 0
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s g:$s! p(a|s) p(a|s) aargmax

Current$Board Next$Action



1.*Reducing*“action*candidates”

(1) Imitating+expert+moves+(supervised+learning)

Deep$Learning
(13$Layer$CNN)

0 0+ 0 0 0+ 0 0 0 0
0 0+ 0 0 0 1 0 0 0
0 H1 0 0 1 H1 1 0 0
0 1 0 0 1 H1 0 0 0
0 0+ 0 0 H1 0 0 0 0
0 0+ 0 0 0+ 0 0 0 0
0 H1 0 0 0+ 0 0 0 0
0 0+ 0 0 0+ 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

s g:$s! p(a|s)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0++++++ 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.2 0.1 0 0
0 0 0 0 0 0.4$0.2 0 0
0 0 0 0 0 0.1+++ 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

p(a|s) aargmax

Current$Board Next$Action



Go: abstraction+is+the+key+to+win

CNN:+abstraction+is+its+forte



1.*Reducing*“action*candidates”

(1) Imitating+expert+moves+(supervised+learning)

Expert$Moves$Imitator$Model
(w/$CNN)

Current$Board Next$Action

Training:



1.*Reducing*“action*candidates”

(2) Improving+through+selfIplays+(reinforcement+learning)

Expert$Moves$
Imitator$Model

(w/$CNN)

Expert$Moves$
Imitator$Model

(w/$CNN)
VS

Improving$by$playing$against$itself
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(2) Improving+through+selfIplays+(reinforcement+learning)

Expert$Moves$
Imitator$Model

(w/$CNN)

Expert$Moves$
Imitator$Model

(w/$CNN)
VS

Return:+board+positions, win/lose info



1.*Reducing*“action*candidates”

(2) Improving+through+selfIplays+(reinforcement+learning)

Expert$Moves$Imitator$Model
(w/$CNN)

Board$position win/loss

Training:

Loss
z+=+I1



1.*Reducing*“action*candidates”

(2) Improving+through+selfIplays+(reinforcement+learning)

Expert$Moves$Imitator$Model
(w/$CNN)

Training:

z+=++1

Board$position win/loss

Win



1.*Reducing*“action*candidates”

(2) Improving+through+selfIplays+(reinforcement+learning)

Updated$Model
ver 1.1

Updated$Model
ver 1.3VS

Return:+board+positions, win/lose info

It$uses$the$same$topology$as$the$expert$moves$imitator$model,$and$just$uses$the$updated parameters

Older$models$vs.$newer$models



1.*Reducing*“action*candidates”

(2) Improving+through+selfIplays+(reinforcement+learning)

Updated$Model$
ver 1.3

Updated$Model$
ver 1.7VS

Return:+board+positions, win/lose info



1.*Reducing*“action*candidates”

(2) Improving+through+selfIplays+(reinforcement+learning)

Updated$Model$
ver 1.5

Updated$Model$
ver 2.0VS

Return:+board+positions, win/lose info



1.*Reducing*“action*candidates”

(2) Improving+through+selfIplays+(reinforcement+learning)

Updated$Model$
ver 3204.1

Updated$Model$
ver 46235.2VS

Return:+board+positions, win/lose info



1.*Reducing*“action*candidates”

(2) Improving+through+selfIplays+(reinforcement+learning)

Updated$Model$
ver 1,000,000VS

The$final$model$wins 80%$of$the time
when$playing$against$the$first$model

Expert$Moves$
Imitator$Model



2.*Board*Evaluation



2.*Board*Evaluation

Updated$Model
ver 1,000,000

Board$Position

Training:

Win$/$Loss

Win
(0~1)

Value$
Prediction$
Model

(Regression)

Adds$a regression$layer$to$the$model
Predicts$values$between$0~1
Close$to$1:$a$good$board$position
Close$to$0:$a$bad$board$position



Reducing*Search*Space

1. Reducing$“action$candidates”
(Breadth$Reduction)

2. Board$Evaluation (Depth$Reduction)

Policy$Network

Value$Network



Looking*ahead*(w/*Monte*Carlo*Search*Tree)

Action$Candidates$Reduction
(Policy$Network)

Board$Evaluation
(Value$Network)

(Rollout):$Faster$version$of$estimating$p(a|s)
! uses shallow$networks$(3$ms! 2µs)



Results
Elo rating$system

Performance$with$different$combinations$of$AlphaGo components



Takeaways
Use+the+networks+trained+for+a+certain+task+(with+different+loss+objectives)+for+several+other+tasks



AlphaGo [Silver et al., ’15]: An AI milestone

Integrated two existing AI technologies
− Supervised learning (Deep learning)
− Reinforcement learning

Does not solve AI
− The end of the line for:

2-player zero-sum discrete finite deterministic
games of perfect information
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Reality

1950           1960          1970           1980          1990           2000           2010          2020          2030
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Perceptions

1950           1960          1970           1980          1990           2000           2010          2020          2030
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Uncertainty

1950           1960          1970           1980          1990           2000           2010          2020          2030
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Perception Uncertainty

1950           1960          1970           1980          1990           2000           2010          2020          2030
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Selected RL Contributions

• Human interaction
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Selected RL Contributions

• Human interaction

− Advice, Demonstration

− Positive/Negative Feedback
[Knox & Stone, ’09]

• Transfer learning for RL [Taylor & Stone, ’07]

• Adaptive/hierarchical representations
[Whiteson & Stone, ’05], [Jong & Stone, ’08]

• TEXPLORE for Robot RL [Hester & Stone, ’13]
− Sample efficient; real-time
− Continuous state; delayed effects

Peter Stone (UT Austin) Reinforcement Learning 16



UT Austin Villa 2014
RoboCup 3D Simulation League Champion via

Overlapping Layered Learning

Patrick MacAlpine, Mike Depinet, and Peter Stone

Peter Stone (UT Austin) Reinforcement Learning 17



Layered Learning
• For domains too complex for tractably mapping state features S

7−→ outputs O

• Hierarchical subtask decomposition given: {L1,L2, . . . ,Ln}
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Layered Learning
• For domains too complex for tractably mapping state features S

7−→ outputs O

• Hierarchical subtask decomposition given: {L1,L2, . . . ,Ln}
• Machine learning: exploit data to train, adapt

• Synthesis: Learning in one layer feeds into next layer

Individual Behaviors

Team Behaviors

Adversarial Behaviors

Environment

High Level Goals

Opportunities
Machine Learning

Multi-Agent Behaviors

World State

Peter Stone (UT Austin) Reinforcement Learning 18



Layered Learning in Practice

First applied in simulated robot soccer [Stone & Veloso, ’97]

Strategic Level Example
L1 individual ball interception
L2 multiagent pass evaluation
L3 team pass selection
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Layered Learning in Practice

First applied in simulated robot soccer [Stone & Veloso, ’97]

Strategic Level Example
L1 individual ball interception
L2 multiagent pass evaluation
L3 team pass selection

Later applied on real robots [Stone, Kohl, & Fidelman, ’06]

Strategic Level Example
L1 individual fast walking
L2 individual ball control

Peter Stone (UT Austin) Reinforcement Learning 19



Layered Learning Paradigms

DESCRIPTIONS:

Sequential Layered Learning: Freeze parameters of layer after
learning before learning of the next layer

Concurrent Layered Learning: Keep parameters of layer open
during learning of the next layer

Peter Stone (UT Austin) Reinforcement Learning 20



Layered Learning Paradigms

PROBLEMS:

Sequential Layered Learning: Can be too limiting in the joint layer
policy seach space

Concurrent Layered Learning: The increased dimensionality can
make learning harder or intractible

Peter Stone (UT Austin) Reinforcement Learning 20



Layered Learning Paradigms

SOLUTION:

Overlapping Layered Learning: Tradeoff between freezing or
keeping open previous learned layers

Optimizes “seam” or overlap between behaviors: keeps some parts of
previously learned layers open during subsequent learning

Peter Stone (UT Austin) Reinforcement Learning 20



Overlapping Layered Learning
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Overlapping Layered Learning

Combining Independently Learned Behaviors: Behaviors learned
indpendently and then combined by relearning subset of behaviors’
parameters
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Overlapping Layered Learning

Combining Independently Learned Behaviors: Behaviors learned
indpendently and then combined by relearning subset of behaviors’
parameters
Partial Concurrent Layered Learning: Part, but not all, of a previously
learned layer’s behaviors are left open
Previous Learned Layer Refinement: After a pair of layers is learned, part
or all of the initial layer is unfrozen
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RoboCup 3D Simulation Domain

Teams of 11 vs 11 autonomous robots play soccer
Realistic physics using Open Dynamics Engine (ODE)
Simulated robots modeled after Aldebaron Nao robot
Robot receives noisy visual information about environment
Robots can communicate over limited bandwidth channel
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RoboCup Champions 2011, 2012
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RoboCup Champions 2011, 2012
Humanoid Walk Learning via Layered Learning and CMA-ES

• Parameterized double linear inverted pendulum model
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RoboCup Champions 2011, 2012
Humanoid Walk Learning via Layered Learning and CMA-ES

• Parameterized double linear inverted pendulum model

CMA-ES
[Hansen, ’09]

• Stochastic, derivative-free, numerical optimization method
• Candidates sampled from multidimensional Gaussian

− Mean maximizes likelihood of previous successes
− Covariance update controls search step sizes

Initial walk No layered learning 2 layers
3 layers Final walk Champs*2
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Learned Layers

19 learned behaviors for standing up, walking, and kicking
◮ CILB, PCLL, PLLR

Over 500 parameters optimized during the course of learning
◮ frozen, passed, seeded
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Dribbling and Kicking the Ball in the Goal

Four different walk parameter sets
◮ Target/sprint/position + approach ball to kick

Learn fixed kick
Combine kick with walk: combine independent layers (CILB)

◮ Overlap kick parameters for positioning
Final walk and kick

Peter Stone (UT Austin) Reinforcement Learning 25



Scoring on a Kickoff

Kickoffs indirect (2 players must touch to score)
Learn fixed kick
Learn touch behavior interferes
Combine kick with touch

◮ Relearn position patterns: combine independent layers (CILB)
◮ Learn new timing parameter: partial concurrent (PCLL)
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Impact of Overlapping Layered Learning

1000 games vs. top 3 teams from 2013

Peter Stone (UT Austin) Reinforcement Learning 27



Impact of Overlapping Layered Learning

1000 games vs. top 3 teams from 2013

Average Goal Difference
Opponent Full Team No Kickoff Dribble Only
apollo3d 2.703 (0.041) 2.062 (0.038) 1.861 (0.034)

UTAustinVilla2013 1.589 (0.036) 1.225 (0.033) 0.849 (0.025)
fcportugal3d 3.991 (0.051) 3.189 (0.048) 1.584 (0.030)

No Kickoff: On kickoff, kick ball deep into opponent’s end
Dribble Only: No kicking
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Repetition on Different Robot Types

Type 0: Standard Nao model
Type 1: Longer legs and arms
Type 2: Quicker moving legs
Type 3: Wider hips and longest legs and arms
Type 4: Added toes to foot
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Repetition on Different Robot Types

Type 0: Standard Nao model
Type 1: Longer legs and arms
Type 2: Quicker moving legs
Type 3: Wider hips and longest legs and arms
Type 4: Added toes to foot

Avg. Goal Difference per Robot Type
Opponent Type 0 Type 1 Type 2 Type 3 Type 4
apollo3d 1.787 1.819 1.820 1.543 2.827

UTAustinVilla2013 0.992 0.892 1.276 0.573 1.141
fcportugal3d 2.423 3.025 3.275 2.678 4.033
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Repetition on Different Robot Types

Type 0: Standard Nao model
Type 1: Longer legs and arms
Type 2: Quicker moving legs
Type 3: Wider hips and longest legs and arms
Type 4: Added toes to foot

Avg. Goal Difference per Robot Type
Opponent Type 0 Type 1 Type 2 Type 3 Type 4
apollo3d 1.787 1.819 1.820 1.543 2.827

UTAustinVilla2013 0.992 0.892 1.276 0.573 1.141
fcportugal3d 2.423 3.025 3.275 2.678 4.033

Computation per type
≈ 700k parameter sets evaluated
≈ 1.5 years compute time (≈ 50 hours on condor cluster)
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RoboCup 2014

Won competition with undefeated record: outscored opps 52–0

Opponent Avg. Goal Diff. Record (W-L-T) Goals (F/A) KO Score %
BahiaRT 2.075 (0.030) 990-0-10 2092/17 96.2

FCPortugal 2.642 (0.034) 986-0-14 2748/106 83.4
magmaOffenburg 2.855 (0.035) 990-0-10 2864/9 88.3

RoboCanes 3.081 (0.046) 974-0-26 3155/74 69.4
FUT-K 3.236 (0.039) 998-0-2 3240/4 96.3

SEU_Jolly 4.031 (0.062) 995-0-5 4034/3 87.6
KarachiKoalas 5.681 (0.046) 1000-0-0 5682/1 87.5

ODENS 7.933 (0.041) 1000-0-0 7933/0 92.1
HfutEngine 8.510 (0.050) 1000-0-0 8510/0 94.7
Mithras3D 8.897 (0.041) 1000-0-0 8897/0 90.4
L3M-SIM 9.304 (0.043) 1000-0-0 9304/0 93.7
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After: 11,000 games: won all by 67 (no losses)
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Won competition with undefeated record: outscored opps 52–0

Opponent Avg. Goal Diff. Record (W-L-T) Goals (F/A) KO Score %
BahiaRT 2.075 (0.030) 990-0-10 2092/17 96.2

FCPortugal 2.642 (0.034) 986-0-14 2748/106 83.4
magmaOffenburg 2.855 (0.035) 990-0-10 2864/9 88.3

RoboCanes 3.081 (0.046) 974-0-26 3155/74 69.4
FUT-K 3.236 (0.039) 998-0-2 3240/4 96.3

SEU_Jolly 4.031 (0.062) 995-0-5 4034/3 87.6
KarachiKoalas 5.681 (0.046) 1000-0-0 5682/1 87.5

ODENS 7.933 (0.041) 1000-0-0 7933/0 92.1
HfutEngine 8.510 (0.050) 1000-0-0 8510/0 94.7
Mithras3D 8.897 (0.041) 1000-0-0 8897/0 90.4
L3M-SIM 9.304 (0.043) 1000-0-0 9304/0 93.7

After: 11,000 games: won all by 67 (no losses)
Highlights from Final vs. RoboCanes (University of Miami)
More info: www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

Peter Stone (UT Austin) Reinforcement Learning 29



Practical RL
To learn

Finite MDP

State Aliasing

Generalization

To apply To learn

Representation
◮ Selecting the Algorithm: parameterized domains [K.&S., MLJ 2011]
◮ Adapting Representation: NEAT+Q [Whiteson & S., JMLR 2006]

Interaction
◮ With adversaries: CMLES [Chakraborty & S., ICML 2010]
◮ With ad hoc teammates: PLASTIC [Barrett, thesis 2014]
◮ With people: TAMER [Knox & S., AAMAS 2010]

Synthesis
◮ Of Algorithms: Layered Learning [S., MIT Press 2000]
◮ Of Concepts: Fitted R-MAXQ [Jong & S., ECML 2009]

Mortality
◮ Leverage the Past: Transfer Learning [Taylor, S., & Liu, JMLR 2007]
◮ Acknowledge a Finite Future: TEXPLORE [Hester & S., MLJ 2013]
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Making Friends on the Fly:
Advances in Ad Hoc Teamwork

Samuel Barrett, Katie Genter, and Peter Stone
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Ad Hoc Teamwork [Stone et al., AIJ 2013]

Only in control of a single
agent or subset of agents

Unknown teammates

Shared goals

No pre-coordination
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Ad Hoc Teamwork [Stone et al., AIJ 2013]

Only in control of a single
agent or subset of agents

Unknown teammates

Shared goals

No pre-coordination

Examples in humans:

Pick up soccer

Accident response
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PLASTIC: Planning and Learning to Adapt Swiftly to
Teammates to Improve Cooperation
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Testbed Domains

Agent replaces single teammate in otherwise coherent team
Adapts based on knowledge learned from previous teammates
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Other Ad Hoc Teamwork

Introduced as AAAI Challenge Problem [Stone et al. ’10]
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Other Ad Hoc Teamwork

Introduced as AAAI Challenge Problem [Stone et al. ’10]

Theory: repeated games, bandits [Stone et al., ’11]

Experiments: flocking [Genter & Stone, ’12]

RoboCup experiments [Genter et al., ’15]

AAAI Workshops, JAAMAS special issue
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Power TAC: 2013 Champions

Balancing 

Market

Wholesale 

Market Tariff 

Market

electricity

generation 

companies

renewables

production

commercial/residential

consumers

national grid

competing

broker

agents

Electricity

Grid
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