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Outline 

• Source of suboptimality in  

–Recursively optimal policy 

–Hierarchically optimal policy 

 

• Solutions have been developed 

 



• Hierarchical optimality:  the final policy is the 

best policy consistent with given hierarchy. 

• Recursive optimality: the final policy is 

optimal given the policies learned by its 

children. 

• Source of suboptimality for each type? 

 

Recall: Recursively vs. hierarchically optimal policy 



Domain (Dietterich) 

• Grid world, start in the 

room on the left side, 

the Goal is located in 

the upper right corner. 

• Actions:   

• 2 doors 

• Each action costs -1, 

goal gives reward 0. 



Source of suboptimality 

• What if we have the subtask as  

“exit by the nearest door?” 

• What is the optimal policy, 

for the subtask? 
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• From the optimal policies of our subtask, we 

achieve this final policy.  

• Is it recursively optimal? 

• Is it hierarchically optimal? 

• Is it optimal? 

• This is a recursively optimal 

policy, but not hierarchically 

optimal nor globally optimal. 

 



Source of suboptimality 

• What would be a hierarchically optimal policy? 

• We can always exit by upper 

door. 

• Is it recursively optimal? 

• Is it globally optimal? 
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Source of suboptimality 

• One question we may ask is, is hierarchically 

optimal policy always optimal? What about in 

our example? 

• If we put a “landmark” at the lower door, and 

we always exit by the lower door. 

• The result is clearly hierarchically optimal, but 

not globally optimal. 

 



• Hierarchical optimality:  the imposed 

hierarchy constrains our policy. 

 

• Recursive optimality: the policies learned from 

the subtasks are locally optimal, but we may 

have better policies for parent task. 

 

  Summary: source of suboptimality 



Next… 

• How do we deal with this problem? 

– Ideas? 

– There are helpful thoughts from our readings. 

 



Solutions 

• How do we deal with this problem? 

• Approaches 

• Extend option set O to include A (primitive actions) 

• Redefine the reward of completing subtasks 

• Non-hierarchical execution 

 



1. Extending O to include A 

• Introduce primitive actions as special cases of 

options 

– Recall the hallway example and experimental results 

 

• What is the cost? 



1. Extending O to include A 

• Introduce primitive actions as special cases of 

options 

– Recall the hallway example and experimental results 

 

• What is the cost? 

– Could it be even slower than non-hierarchical 

learning? 



2. Redefine the subtasks 
• What is the difference between subtask and 

option? 

– Option: <I, π, β> 

– Subtask: <I, R, β> 

• R: pseudo reward function. 

 

-2 

-6 



2. Dynamically redefine the subtasks 

• Denote the subgoal states for task i as B(i) 

• Initialize V ’(s) for all states in B(i)   

• Repeat: 

– Define a Pseudo-reward functions 

• R’(s)=V’(s),  for s that are in B(i) 

• 0,  elsewhere 

– Apply hierarchical SMDP learning method to learn 

recursive optimal policy 

– Update V’(s) 

 



3. Non-hierarchical execution  

•  Qπ(s,a): function Q for learned hierarchical 

policy π, a is an option. 

• At each time step, compute a=argmaxa Qπ(s,a), 

then execute one primitive action according to a. 

• We might terminate an option early. 

• Similar to policy improvement in policy iteration, 

it always improves the policy. 



3. Non-hierarchical execution 

• An extreme case: what if we interrupt at every 

step (polling execution)? Do we still have 

advantage over non-hierarchical algorithms? 



  Thank you! 


