Suboptimality in Hierarchical RL



Outline

 Source of suboptimality In
—Recursively optimal policy
—Hierarchically optimal policy

 Solutions have been developed



Recall: Recursively vs. hierarchically optimal policy

* Hierarchical optimality: the final policy is the

nest policy consistent with given hierarchy.

 Recursive optimality: the final policy is
optimal given the policies learned by its
children.

 Source of suboptimality for each type?




Domain (Dietterich)

Grid world, start in the
room on the left side,
the Goal Is located In
the upper right corner.

Actions: = W A
2 doors

Each action costs -1,
goal gives reward O.



Source of suboptimality

 \What If we have the subtask as

“exit by the nearest door?” “
» What is the optimal policy, NN .
for the subtask? T




Source of suboptimality

* What if we have the subtask as
“exit by the nearest door?”

* What is the optimal policy,

for the subtask?




Source of suboptimality

From the optimal policies of our subtask, we
achieve this final policy.

Is it recursively optimal?
Is it hierarchically optimal?
Is it globally optimal?




Source of suboptimality

* From the optimal policies of our subtask, we
achieve this final policy.

* Is it recursively optimal?

* Is it hierarchically optimal?
* Is it optimal?

 This Is a recursively optimal
policy, but not hierarchically
optimal nor globally optimal.




Source of suboptimality

» What would be a hierarchically optimal policy?
* \We can always exit by upper
door.

« Is it recursively optimal?

____________________________

* |s it globally optimal? NEYG

___________________________

___________________________




Source of suboptimality

* One question we may ask Is, Is hierarchically
optimal policy always optimal? What about In
our example?



Source of suboptimality

* One question we may ask Is, Is hierarchically
optimal policy always optimal? What about In
our example?

o If we put a “landmark” at the lower door, and
we always exit by the lower door.

* The result Is clearly hierarchically optimal, but
not globally optimal.




Summary: source of suboptimality

 Hierarchical optimality: the imposed
hierarchy constrains our policy.

 Recursive optimality: the policies learned from
the subtasks are locally optimal, but we may
have better policies for parent task.



Next...

* How do we deal with this problem?
— ldeas?
— There are helpful thoughts from our readings.



Solutions

* How do we deal with this problem?

* Approaches
« Extend option set O to include A (primitive actions)
* Redefine the reward of completing subtasks
* Non-hierarchical execution



1. Extending O to include A

* Introduce primitive actions as special cases of
options
— Recall the hallway example and experimental results

 \What Is the cost?



1. Extending O to include A

* Introduce primitive actions as special cases of
options
— Recall the hallway example and experimental results

 \What Is the cost?

— Could 1t be even slower than non-hierarchical
learning?



2. Redefine the subtasks

 What iIs the difference between subtask and
option?
— Option: <I, z, >
— Subtask: <I, R, >
* R: pseudo reward function.

________________________________________________________

________________________________________________________

________________________________________________________

________________________________________________________




2. Dynamically redefine the subtasks

* Denote the subgoal states for task 1 as B()
* Initialize V °(s) for all states in B(i)

- Repeat:
— Define a Pseudo-reward functions
* R’(s)=V"(s), for s thatare in B(i)
* 0, elsewhere

— Apply hierarchical SMDP learning method to learn
recursive optimal policy

— Update V’(s)



3. Non-hierarchical execution

Q7*(s,a): function Q for learned hierarchical
policy &, a Is an option.

At each time step, compute a=argmaxa Q*(s,a),
then execute one primitive action according to a.

We might terminate an option early.

Similar to policy improvement in policy iteration,
It always improves the policy.



3. Non-hierarchical execution

* An extreme case: what If we Interrupt at every
step (polling execution)? Do we still have
advantage over non-hierarchical algorithms?



Thank you!



