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Robot Learning

Robots have the potential to solve many problems

We need methods for them to learn and adapt to new

situations
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Reinforcement Learning

Value function RL has string of positive theoretical results

[Watkins 1989, Brafman and Tennenholtz 2001]

Could be used for learning and adaptation on robots

Hester and Stone – UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots



Introduction

Model Learning

Parallel Architecture

Experiments

Conclusion

Reinforcement Learning

Model-free Methods

Learn a value function directly from interaction with

environment

Can run in real-time, but not very sample efficient

Model-based Methods

Learn model of transition and reward dynamics

Update value function using model (planning)

Can update action-values without taking real actions in the

world
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Velocity Control of an Autonomous Vehicle

Upgraded to run autonomously by adding shift-by-wire,

steering, and braking actuators.

10 second episodes (at 20 Hz: 200 samples / episode)

Hester and Stone – UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots



Introduction

Model Learning

Parallel Architecture

Experiments

Conclusion

Velocity Control

State:

Current Velocity

Desired Velocity

Accelerator Pedal Position

Brake Pedal Position

Actions:

Do nothing

Increase/decrease brake position by 0.1

Increase/decrease accelerator position

by 0.1

Reward: -10.0 * velocity error (m/s)
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Desiderata

1 Learning algorithm must learn in very few actions (be

sample efficient)

2 Learning algorithm must take actions continually in

real-time (while learning)

3 Learning algorithm must handle continuous state

4 Learning algorithm must handle delayed actions
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Common Approaches

Algorithm Citation Sample Real Continuous Delay
Efficient Time

R-Max Brafman 2001 Yes No No No
Q-Learning Watkins 1989 No Yes No No
with F.A. Sutton & Barto 1998 No Yes Yes No
SARSA Rummery & Niranjan 1994 No Yes No No
GPRL Deisenroth & Rasmussen 2011 Yes No Yes No
BOSS Asmuth et al 2009 Yes No No No
Bayesian DP Strens 2000 Yes No No No
MBBE Dearden et al 1999 Yes No No No
MBS Walsh et al 2009 Yes No No Yes
Dyna Sutton 1990 No Yes No No
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The TEXPLORE Algorithm

1 Limits exploration to be sample efficient

2 Selects actions continually in real-time

3 Handles continuous state

4 Handles actuator delays

Available publicly as a ROS package:

www.ros.org/wiki/rl-texplore-ros-pkg
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Challenge 1: Sample Efficiency

Treat model learning as a supervised
learning problem

Input: State and Action

Output: Distribution over next states

and reward

Factored model: Learn a separate

model to predict each next state feature

and reward

Decision Trees: Split state space into

regions with similar dynamics
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Random Forest Model [ICDL 2010]

Average predictions of m different decision

trees

Each tree represents a hypothesis of the

true dynamics of the domain

Acting greedily w.r.t. the average model

balances predictions of optimistic and

pessimistic models

Limits the agent’s exploration to

state-actions that appear promising, while

avoiding those which may have negative

outcomes
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Challenge 2: Real-Time Action Selection

Model update can take too long

Planning can take too long
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Real-Time Model Based Architecture (RTMBA)

Model learning and planning on

parallel threads

Action selection is not restricted

by their computation time

Use sample-based planning

(anytime)

Mutex locks on shared data
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Challenge 3: Continuous State

Use regression trees to model

continuous state

Each tree has a linear regression

model at its leaves

Discretize state space for value

updates from UCT, but still plan over

continuously valued states
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Challenge 4: Actuator Delays

Delays make domain non-Markov, but k-Markov

Provide model with previous k actions (Similar to U-Tree

[McCallum 1996])

Trees can learn which delayed actions are relevant

UCT can plan over augmented state-action histories easily

Would not be as easy with tabular models or dynamic

programming
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Autonomous Vehicle

Upgraded to run

autonomously by adding

shift-by-wire, steering, and

braking actuators.

Vehicle runs at 20 Hz.

Agent must provide

commands at this frequency.
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Uses ROS [Quigley et al 2009]

http://www.ros.org/wiki/rl_msgs
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Simulation Experiments

Exploration Approaches

Epsilon-Greedy

Boltzmann Exploration

Use merged BOSS-like model

Use random model each episode

Sample Efficient Methods

BOSS [Asmuth et al 2009]

Bayesian DP [Strens 2000]

Gaussian Process RL [Deisenroth & Rasmussen 2011]
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Simulation Experiments

Continuous Models

Tabular Models

Gaussian Process RL [Deisenroth & Rasmussen 2011]

KWIK linear regression [Strehl & Littman 2007]

Real-Time Architectures

Real Time Dynamic Programming [Barto et al 1995]

Dyna [Sutton 1990]

Parallel Value Iteration

Actuator Delays

Model Based Simulation [Walsh et al 2009]
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Challenge 1: Sample Efficiency
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Challenge 1: Sample Efficiency
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Challenge 2: Real-Time Action Selection
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Challenge 3: Modeling Continuous Domains
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Challenge 4: Handling Delayed Actions
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On the physical vehicle

But, does it work on the actual vehicle?
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On the physical vehicle
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Yes! It learns the task within 2 minutes of driving time
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Conclusion

TEXPLORE can:
1 Learn in few samples
2 Act continually in real-time
3 Learn in continuous domains
4 Handle actuator delays

TEXPLORE code has been

released as a ROS package:

www.ros.org/wiki/rl-texplore-ros-pkg
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