POMDPs and Information Gathering

Prof. Scott Niekum

Recall, MDP M = < S, A, T, R >

- If **T** unknown, model-free methods like Q-learning
- If knowledge of **T**, model-based dynamic programming

Bellman equation:
$$V_{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} T(s, a, s') \left[R(s, a) + \gamma V_{\pi}(s') \right]$$

Value iteration:
$$\hat{V}^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a) + \gamma V_{\pi}(s') \right]$$

Finish +100
-1 elsewhere

Start

Recall, MDP M = < S, A, T, R >

- If **T** unknown, model-free methods like Q-learning
- If knowledge of **T**, model-based dynamic programming

Bellman equation:
$$V_{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} T(s, a, s') [R(s, a) + \gamma V_{\pi}(s')]$$

Value iteration: $\hat{V}^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a) + \gamma V_{\pi}(s')]$
Finish +100

	-1	-1	-1	100	-1 elsewhere
	-1	-1	-1	-1	
	-1	-1	-1	-1	
nrt	-1	-1	-1	-1	

Start L

Recall, MDP $M = \langle S, A, T, R \rangle$

- If **T** unknown, model-free methods like Q-learning
- If knowledge of **T**, model-based dynamic programming

Bellman equation:
$$V_{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} T(s, a, s') [R(s, a) + \gamma V_{\pi}(s')]$$

Value iteration: $\hat{V}^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a) + \gamma V_{\pi}(s')]$

					Finish $+100$
	-2	-2	99	100	-1 elsewhe
	-2	-2	-2	99	
	-2	-2	-2	-2	
Start	-2	-2	-2	-2	

-1 elsewhere

Recall, MDP $M = \langle S, A, T, R \rangle$

- If **T** unknown, model-free methods like Q-learning
- If knowledge of **T**, model-based dynamic programming

Bellman equation:
$$V_{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} T(s, a, s') [R(s, a) + \gamma V_{\pi}(s')]$$

Value iteration: $\hat{V}^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a) + \gamma V_{\pi}(s')]$

				Finish + 100
93	94	99	100	-1 elsewhe
92	95	98	99	
91	96	97	98	
94	95	96	97	
	92 91	92 95 91 96	92 95 98 91 96 97	92 95 98 99 91 96 97 98

-1 elsewhere

Partially Observable Markov Decision Process

POMDP
$$P = \langle S, A, T, R, \Omega, O \rangle$$

 Ω : a set of observations

 $O: S \times \Omega \rightarrow [0,1]$ observation probabilities

Examples when state is pose:

- GPS provides pose corrupted by noise
- Pose is inaccessible, only have odometer velocity

Instead of state, use belief state: $p(s|o_1, a_1, \ldots, o_N, a_N)$

Partially Observable Markov Decision Process

POMDP
$$P = < S, A, T, R, \Omega, O >$$

 $\boldsymbol{\Omega}$: a set of observations

 $O: S \times \Omega \rightarrow [0,1]$ observation probabilities

Examples when state is pose:

- GPS provides pose corrupted by noise
- Pose is inaccessible, only have odometer velocity

Instead of state, use belief state: $p(s|o_1, a_1, \ldots, o_N, a_N)$

Why can't we (tractably) use value iteration in a POMDP?

Partially Observable Markov Decision Process

Every probability discretized into 2 bins: 0-50% and 50-100% $2^{|S|}$ possible belief states and can't handle continuous state!

Hack: Assume max likelihood state is the true state

- Doesn't take uncertainty into account.
- Lose nice properties of POMDPs like info gathering

Alternative: Only use parameterized belief states like Gaussian

• How to update mean and covariance?

Control problems

LQR - optimal control for linear dynamics + quadratic cost

$$x_{t+1} = Ax_t + Bu_t \qquad g(x_t, u_t) = x_t^\top Q x_t + u_t^\top R u_t$$

LQG - linear dynamics + quadratic cost + Gaussian noise

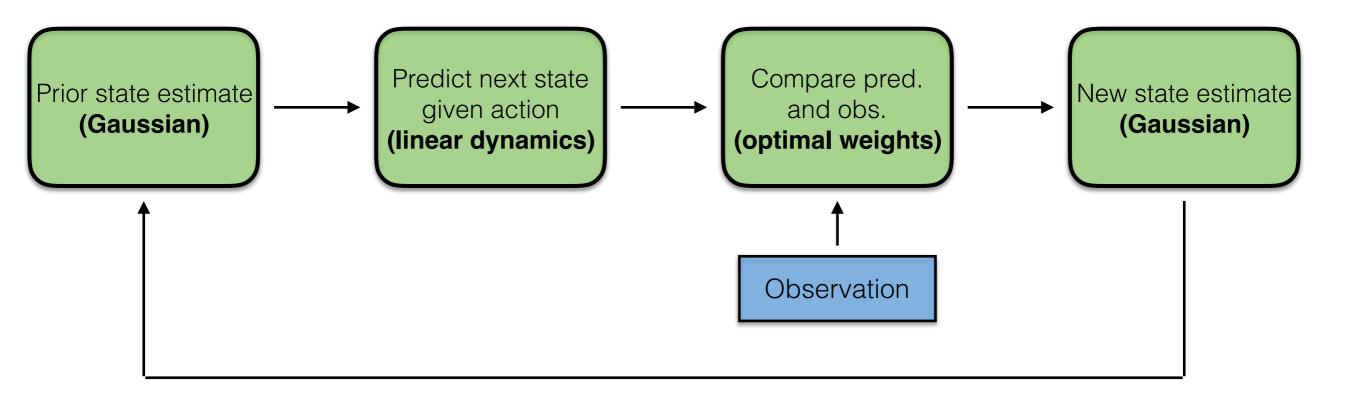
• LQR + Kalman filter point estimate

$$x_{t+1} = Ax_t + Bu_t + w_t$$
$$y_t = Cx_t + w_t$$

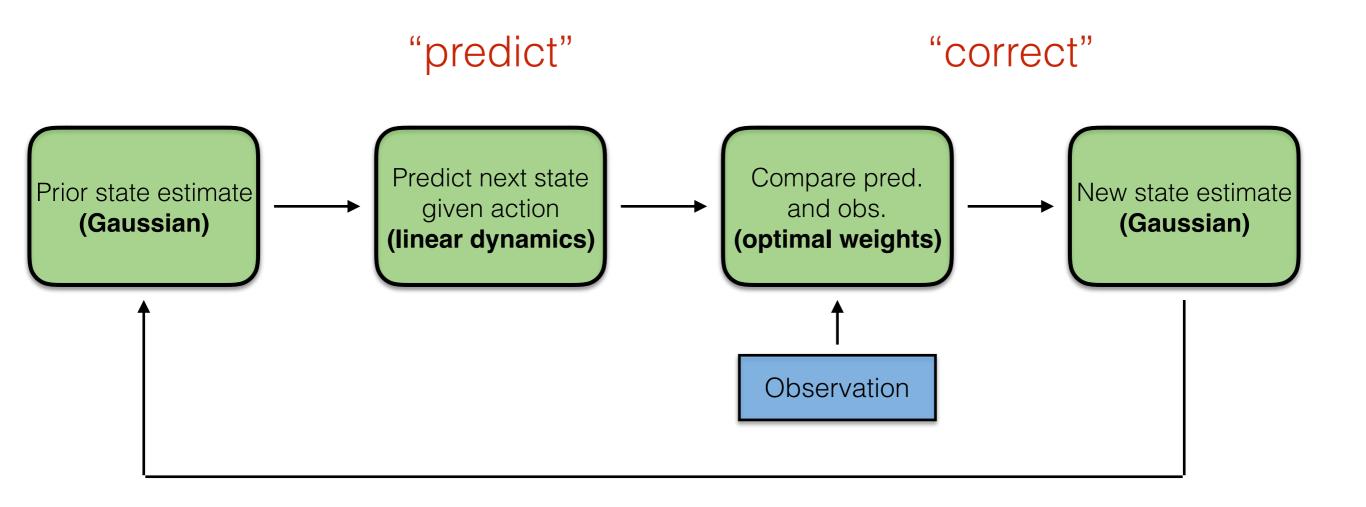
Platt et al. - B-LQR for planning in belief space in nonlinear POMDP

- LQR + Kalman filter full distribution
- Consider uncertainty directly information gathering actions

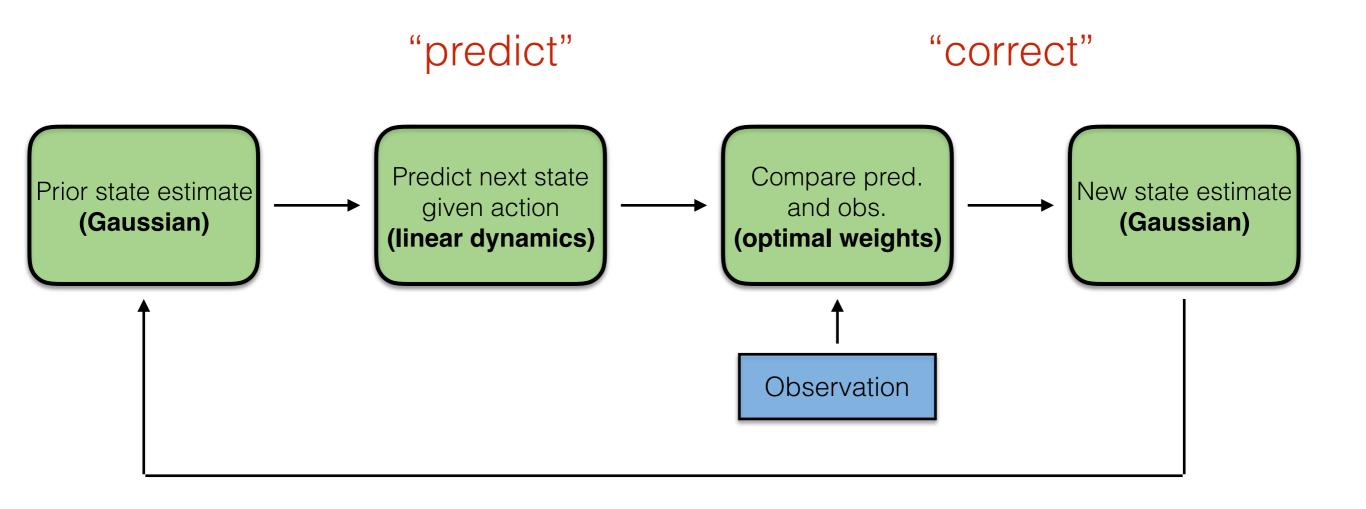
Kalman filter: conceptual idea

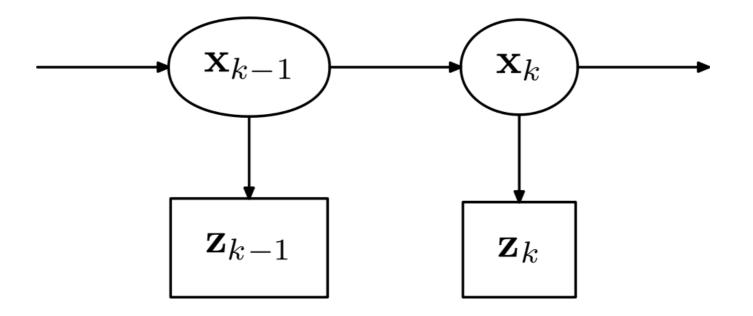


Kalman filter: conceptual idea



Kalman filter: conceptual idea





Extended Kalman filter

$$oldsymbol{H}_k = \left. rac{\partial h}{\partial oldsymbol{x}}
ight|_{\hat{oldsymbol{x}}_{k|k-1}}$$

Bringing it together

Extended Kalman filter - track state under nonlinear dynamics

LQG - Solve optimal control problem in **state space** with linear dynamics by using KF state estimate with LQR Essentially a point estimate of state

B-LQR - Solve control problem in **nonlinear belief space** Takes uncertainty directly into account for planning

