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Count-based exploration (Bellemare et al. 2016)
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Count-based exploration (Bellemare et al. 2016)
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Figure 1: Pseudo-counts obtained from a CTS density model applied to FREEWAY, along with a
frame representative of the salient event (crossing the road). Shaded areas depict periods during
which the agent observes the salient event, dotted lines interpolate across periods during which the
salient event is not observed. The reported values are 10,000-frame averages.



Count-based exploration (Bellemare et al. 2016)

Info gain: KL divergence between prior and posterior
(In this case, of the density model) when observing new data

Intuitively: how much does the data change your beliefs?
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A particular choice of pseudo count-based exploration bonus Is at least as
exploratory as computing a (usually intractable) information gain bonus!




Go-Explore (Ecoffet et al. 2019)

1. Intrinsic reward (green) is distributed 2. An IM algorithm might start by exploring
throughout the environment (purple) a nearby area with intrinsic reward
“ “
3. By chance, it may explore 4. Exploration fails to rediscover
another equally profitable area promising areas it has detached from



Go-Explore (Ecoffet et al. 2019)

Phase 1: explore until solved Phase 2: robustify

(if necessary)
Go to state Explore
from state

Figure 2: A high-level overview of the Go-Explore algorithm.
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Where do rewards come from! (Singh et al.)
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Figure 1: Agent-Environment Interaction in RL. A: The usual view. B: An elaboration.




What about evolved intrinsic rewards! (Niekum el al. 2010)

Fig. 1. Hungry-Thirsty domain. Thick lines are walls, striped squares denote
possible food or water sites.



What about evolved intrinsic rewards! (Niekum el al. 2010)
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Fig. 3. Evolved reward function from the Hungry—Thirsty domain.
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What about evolved intrinsic rewards! (Niekum el al. 2010)
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Fig. 2. Agent fitness (left) and evolutionary progress (right) over a distribution of environments.
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Fig. 4. Agent fitness on nonstationary (left) and short lifetime (right) problems.

What about evolved intrinsic rewards! (Niekum el al. 2010)
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Alternate idea:is it possible to explore by generating
and testing causal hypotheses about the world!?



Simplifying assumptions:

Objects: spatially localized, permanence, temporal
coherence, static appearances and properties

Quasi-static assumption: Objects have properties such as
position or velocity that do not change unless acted upon

Proximity assumption: Objects cannot interact unless they
make contact



Two Ways to improve Exploration:

Hypothesis driven

Control directed
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Core idea:

Given a hypothesized interaction between two objects, verify
If a relation exists by learning to control that interaction



Control Hypothesis
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Detect changepoints In dynamics

Control Hypothesis

\

e

<

Visual Hypothesis Hypothesis Verification

Discover convolutional filters Learn optioné with goal of
that behave like objects creating particular changepoints
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Breakout Training Curves
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Pushing Domain Training Curves

HyPE Performance on Simulated Pushing Domain

1.0

—— HyPE

0.8 4 ' Block Training

Raw Reward Training

0.6

0.4 4

Average Episode Reward

0.2 -

0.0

! ! ! ! | ! |
100k 400k 700k 1m 1.3m 1.6m 2.0m 2.5m

Number of Timesteps



