

Learning Complementary Multiagent Behaviors: A Case Study

Shivaram Kalyanakrishnan and Peter Stone

The University of Texas at Austin

May 2009

Learning Complementary Multiagent Behaviors / Shivaram Kalyanakrishnan and Peter Stone / May 2009

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

Motivation: Keepaway Soccer

- ▶ 3 "keepers", 2 "takers".
- Episode ends when takers get possession or ball goes outside field.
- Keepers to maximize episodic hold time.
- Noisy sensor information.
- Stochastic, high-level actions.
- Multiagency.
- Real-time processing.

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

Takers follow fixed policy of intercepting ball.

Learning Complementary Multiagent Behaviors / Shivaram Kalyanakrishnan and Peter Stone / May 2009

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

Takers follow fixed policy of intercepting ball.

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

Takers follow fixed policy of intercepting ball.

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

Takers follow fixed policy of intercepting ball.

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

PASS and GETOPEN: Coupled Behaviors

- PASS and GETOPEN fit the category of "distinct populations with coupled fitness landscapes" (Rosin and Belew, 1995).
- ► Can we learn GETOPEN and PASS+GETOPEN?

Learning Complementary Multiagent Behaviors / Shivaram Kalyanakrishnan and Peter Stone / May 2009

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

Talk Overview

- Motivation
- PASS and GETOPEN: Problem formulation.
- Learning PASS, GETOPEN, and PASS+GETOPEN
- Results
- Related Work
- Conclusion

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

PASS

State Variables

$dist(K_1, C)$	$dist(K_1, K_2)$	$\min_{j \in 1,2} dist(K_2, T_j)$
$dist(K_2, C)$	$dist(K_1, K_3)$	$\min_{j\in 1,2} ang(K_2, K_1, T_j)$
$dist(K_3, C)$	$dist(K_1, T_1)$	$\min_{j\in 1,2} dist(K_3, T_j)$
$dist(T_1, C)$	$dist(K_2, T_2)$	$\min_{i \in 1,2} ang(K_3, K_1, T_i)$
$dist(T_2, C)$		

- Actions: {HoldBall, PassBall-2, PassBall-3}.
- To learn policy $\pi : \mathbb{R}^{13} \to \{\text{HoldBall}, \text{PassBall-2}, \text{PassBall-3}\}.$
- ► PASS policies: PASS:RANDOM, PASS:HAND-CODED, PASS:LEARNED.

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

GETOPEN

State Variables

- Action: Move to argmax_P GetOpenValue(P).
- To learn GetOpenValue : $\mathbb{R}^{10} \to \mathbb{R}$.
- GETOPEN policies: GETOPEN:RANDOM, GETOPEN:HAND-CODED, GETOPEN:LEARNED.

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

PASS versus GETOPEN

Pass	GetOpen	
$\begin{bmatrix} K_3 & & & \\ \bullet & T_2 \bullet \bullet \\ & & T_1 & \\ & & K_2 \\ & & \bullet \end{bmatrix}$	$ \begin{array}{c} $	
Executed at a time by one keeper at	Executed every cycle by two keepers.	
most, when it has ball possession.		
3 actions.	25 actions for each keeper.	
Objective function can be decomposed	Credit must be given to	
into credit for individual actions.	sequence of joint actions.	
Learning methods for PASS and GETOPE if learning PASS+GETOPEN.	EN have to cope with non-stationarity	

Learning PASS (Stone et al., 2005)

- ϵ -greedy policy ($\epsilon = 0.01$).
- Each keeper makes Sarsa updates every time it take an action or an episode ends:

 $Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma Q(s', a') - Q(s, a)).$

- CMAC function approximation of Q, with one-dimensional tilings.
- α = 0.125, γ = 1.0

Learning GETOPEN

 Parameterized representation of solution: 2-layer neural network with sigmoid units.

Number of parameters: 91

- Cross-entropy method for policy search.
 - Generating distribution: Gaussian.
 - Population size: 20.
 - Selection fraction: 0.25.
- Each policy evaluated over 125 episodes of Keepaway and averaged.

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

Learning PASS+GETOPEN

Interleaved learning: fix PASS policy, learn GETOPEN; fix GETOPEN policy, learn PASS; iterate.

Algorithm 1 Learning PASS+GETOPEN

```
\begin{array}{l} \label{eq:constraints} \text{Output: Policies } \pi_{\text{PASS}} \text{ and } \pi_{\text{GETOPEN}}. \\ \pi_{\text{PASS}} \leftarrow \text{PASS:RANDOM}. \\ \pi_{\text{GETOPEN}} \leftarrow \text{GETOPEN:RANDOM}. \\ \textbf{repeat} \\ \pi_{\text{GETOPEN}} \leftarrow \textit{learnGetOpen}(\pi_{\text{PASS}}, \pi_{\text{GETOPEN}}). \\ \pi_{\text{PASS}} \leftarrow \textit{learnPass}(\pi_{\text{PASS}}, \pi_{\text{GETOPEN}}). \\ \textbf{until convergence} \\ \text{Return } \pi_{\text{PASS}}, \pi_{\text{GETOPEN}}. \end{array}
```

- Keepers learn PASS autonomously, but share a common GETOPEN policy.
- In implementation, we allot different numbers of episodes for PASS and GETOPEN.

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

Results: Learning Performance

- Averages of 20+ independent runs, static evaluation.
- ▶ P:HC-GO:L \approx P:HC-GO:HC.
- P:HC-GO:L > P:L-GO:HC.
- P:L-GO:R > P:HC-GO:R.
- P:L-GO:L falls short of P:L-GO:HC, P:HC-GO:L, P:HC-GO:HC.

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

Results: Specialization of Learned Policies

PASS:LEARNED						
Train	Troip					
main	GO:R	GO:HC	GO:L			
GO:R	$\textbf{6.37} \pm 0.05$	11.73 ± 0.25	10.54 ± 0.26			
GO:HC	$6.34\pm0.06^-$	15.27 ± 0.26	12.25 ± 0.32			
GOI	5.96 ± 0.07	13.39 ± 0.35	13.08 ± 0.26 (s)			
00.2	0.00 ± 0.07	10.00 ± 0.00	$12.32\pm0.32~(d)^{-1}$			

GETOPEN:LEARNED						
Train		Test				
main	P:R	P:HC	P:L			
P:R	$\textbf{5.89} \pm 0.05$	10.40 ± 0.39	11.15 ± 0.43			
P:HC	5.48 ± 0.04	16.89 ± 0.39	$12.99 \pm 0.43^{}$			
P·I	5.57 ± 0.06	11.78 ± 0.56	13.08 ± 0.26 (s)			
	0.07 ± 0.00	11.70 ± 0.00	$12.32\pm0.32~(d)^{-1}$			

- (*i*, *j*)th entry shows performance (and one standard error) of learned policy trained with counterpart *i* and tested with counterpart *j*.
- Diagonal entries highest (some not statistically significant).

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

Results: Videos

	GO:R	GO:HC	GO:L
P:R			
P:HC			
P:L			

14/16

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

Related Work

- Multiple learning algorithms: Stone's "layered learning" architecture (2000) uses neural nets for ball interception, decision trees for evaluating passes, TPOT-RL for temporal difference learning.
- <u>Simultaneous co-evolution</u>: Rosin and Belew (1995) apply genetic evolution in a *competitive* setting on games such as tic-tac-toe and nim. Haynes *et al.* consider cooperative co-evolution in simple predator-prey domain.
- Concurrent and team learning: Panait and Luke's survey (2005).
- Keepaway: Metzen et al. (2008) propose "EANT" evolution, Taylor et al. (2007) implement behavior transfer. Iscen and Erogul (2008) learn taker behavior.
- <u>Robot soccer</u>: Riedmiller and Gabel (2007) apply model-based reinforcement learning for developing attacker behavior.

Motivation	Overview	PASS&GETOPEN	Learning	Results	Related Work	Conclusion

Conclusion

- We demonstrate on a significantly complex task the effectiveness of applying qualitatively different learning methods to different parts of the task.
- Learning GETOPEN is at least as rewarding as learning PASS.
- We show the feasibility of learning PASS+GETOPEN, although its performance can be improved.
- We show that tightly-coupled behaviors are learned.
- This work extends the scope of multiagent research in the Keepaway benchmark problem.
- Several avenues of future work arise: replicating research carried out with PASS on GETOPEN, agent communication, etc.