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Keepaway: A Subtask of Simulated Soccer

Boundary

Keepers

Takers

Ball

� Play in a small area� Keepers try to keep the ball� Takers try to get the ball� Episode:� Players and ball reset randomly� Ball starts near a keeper� Ends when taker gets the ball or ball goes out� Performance measure: average possession duration� Use pre-defined skills :� HoldBall, PassBall(k ), GoToBall, GetOpen
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Previous Studies

Keepaway as a Successful Machine Learning Testbed� Temporal-Difference Learning [Stone and Sutton, 2001]� Evolutionary Algorithms [DiPietro et al., 2002]� Genetic Programming [Hsu and Gustafson, 2002]� Relational Reinforcement Learning [Walker et al., 2005]� Transfer Learning [Taylor and Stone, 2005]
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Previous Studies

Problems as a Benchmark� Results not directly comparable� Different simulators, low-level behaviors, experimental
setups, and evaluation metrics.� Prohibitively large startup cost� Must reimplement keepaway players� Requires domain expertise
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Standardized Players
Online Resources

Player Framework� Open-source player (C++)� built on UvA Trilearn base player� Implements all but learning� high-level skills, world model, communication.� Simple interface to learning algorithm
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Standardized Players
Online Resources

Standardized Learning Scenario

Takers

Keepers

Ball Teammate with ball
or can get there
faster

notBall
GetOpen()

GoToBall()

Ball 
kickable

kickable

{HoldBall(),PassBall(k)}
(k is another keeper)� Keeper With Ball can HoldBall(), PassBall(k)� Relational State Features:� 11 distances among players, ball, and center� 2 angles to takers along passing lane� Takers follows fixed policy
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Standardized Players
Online Resources

Learning Agent Interface� Learner must implement three C++ functions� int startEpisode(double state[])
called on first action opportunity� int step(double reward, double state[])
called on each action opportunity after first� void endEpisode(double reward)
called once at end of episode� Presents domain as continuous state Semi-Markov

Decision Process� Allows for TD-learning or policy search
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Standardized Players
Online Resources

Online Resources� Complete player source code� Concrete results for comparison� Graphical tools to evaluate performance� Generate learning curves� Step-by-step tutorials� Walk through how to apply new learning algorithm� Students with no prior keepaway experience completed
basic tutorial in under an hour
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Fixed Policies� Fixed policies included with benchmark players� Always Hold: always HoldBall� Random: HoldBall or PassBall(k ) randomly� Hand-coded: simple heuristic policy� Report average performance over 1000 episodes� sanity check for new installations

Policy 3 vs. 2 4 vs. 3 5 vs. 4
Always Hold 3.4�1.5 4.1�1.8 4.8�2.2
Random 7.5�3.7 8.3�4.4 9.5�5.1
Hand-coded 8.3�4.7 9.2�5.2 10.8�6.7
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Experimental Setup� Learn Q�(s;a): Expected possession time� Sarsa(�)� On-policy method : advantages over e.g. Q-learning� Not known to converge, but works (e.g. [Sutton, 1996])� 3 Keepers vs. 2 Takers� Each keeper learns separate value function� Compare different function approximators

Full
soccer
state

Action
values

Function

parameters
with

approximatorcontinuous
state variables

(13)

Few
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CMAC tile-coding� Form of sparse, coarse coding based on CMACs
[Albus, 1981]

Tiling #1

Tiling #2

Dimension #1

D
im

en
si

on
 #

2

Action
values

Full
soccer
state

Few
state

variables
(continuous)

Sparse, coarse,
tile coding

Linear
map

Huge binary feature vector
(about 400 1’s and 40,000 0’s)� Tiled state variables individually (13)� Linear FA on thousands of features
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CMAC tile-coding� 24 independent learning trials� 1000 episode sliding window
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� Reproduction of previous results
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Radial Basis Functions� Generalization of tile-coding to a continuous function� Gaussian: �(x) = exp(� x2

2�2 )
� Better best-case performance than CMAC� between 5 and 25 hours� Not significantly better on average
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Radial Basis Functions� Generalization of tile-coding to a continuous function� Gaussian: �(x) = exp(� x2

2�2 )
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� Better best-case performance than CMAC� between 5 and 25 hours� Not significantly better on average
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Conclusion

Fixed Policies
Function Approximators

Neural Network� 3 separate feed-forward networks (1 per action)� 20 (sigmoid) nodes in hidden layer� Linear output node� Trained with standard back-propagation

� Learned policies not as good as with CMAC or RBF� But more consistent (lower variance)� Room for parameter optimization

P. Stone, G. Kuhlmann, M. Taylor, Y. Liu – UT Austin Keepaway Soccer: From ML Testbed to Benchmark



Benchmark Repository
An Empirical Study

Conclusion

Fixed Policies
Function Approximators

Neural Network� 3 separate feed-forward networks (1 per action)� 20 (sigmoid) nodes in hidden layer� Linear output node� Trained with standard back-propagation

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

 5

 6

 7

 8

 9

 10

 11

 12

 0  5  10  15  20  25  30

E
pi

so
de

 D
ur

at
io

n 
(s

ec
on

ds
)

Training Time (hours)

Neural Network Learning Curves (1000 window)

� Learned policies not as good as with CMAC or RBF� But more consistent (lower variance)� Room for parameter optimization
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Conclusion

Conclusion and Future Work� Keepaway can now be used as an RL benchmark� Benchmark Repository publicly available since
December at:
http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/� Mailing list has 16 (11 non-UT) subscribers� At least one outside researcher with learning results� Possible future uses and extensions� Compare policy search and TD methods� Explore multi-agent learning questions� Different state and action representations� Transfer learning
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