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PAC Formulation

R

ε

Not(  , m)−optimalε (  , m)−optimalε

In an n-armed bandit:

find m (ǫ,m)-optimal arms

with probability at least 1 − δ

using a minimal number of samples.
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Bandit Variations

- PAC vs. Regret setting.

- Independent vs. Dependent arms.

- Stochastic vs. Adversarial rewards.
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Confidence Bounds on the Mean

R

δ

Empirical average

LB(u,  )

Hoeffding’s inequality: With probability at least 1 − δ,

True mean ≥ Empirical average −R
√

1
2u

log( 1
δ
) = LB(u, δ).

Empirical Bernstein bound: With probability at least 1 − δ,

True mean ≥ Empirical average −(

√

σ2log( 3
δ
)

2u
+

3Rlog( 3
δ
)

2u
) = LB(u, σ2, δ).
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Algorithms for Subset Selection

- DIRECT Algorithm:

Sample each arm ⌈ 2
ǫ2 log n

δ
⌉ times.

Return m arms with highest empirical averages.

- Achieves PAC guarantee.
- Sample complexity: O( n

ǫ2 log( n
δ
)).
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- DIRECT Algorithm:

Sample each arm ⌈ 2
ǫ2 log n

δ
⌉ times.

Return m arms with highest empirical averages.

- Achieves PAC guarantee.
- Sample complexity: O( n

ǫ2 log( n
δ
)).

- HALVING Algorithm:

Sample each arm u1(m, ǫ, δ) times.
Discard half the arms with lower empirical averages.
Sample each remaining arm u2(m, ǫ, δ) times.
Discard half the remaining arms with lower empirical averages.

.

.

.
Until m arms remain.

- Achieves PAC guarantee.
- Sequence (ui) such that total number of samples is O( n

ǫ2 log(m
δ
)).

- Optimal up to a constant factor.
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Problem Complexity

Instance 1 Instance 2 Instance 3
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∆a
def
=

{

pa − pm+1 if 1 ≤ a ≤ m,

pm − pa if m + 1 ≤ a ≤ n.

H
ǫ/2 =

n
∑

a=1

1

max{∆a,
ǫ
2
}2

.
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Algorithms for Subset Selection (contd.)

- LUCB Algorithm:

Achieves PAC guarantee.

Expected sample complexity of O
(

Hǫ/2 log
(

Hǫ/2

δ

))

.

p
(7)

t

p
(7)

t

l
t
*

1

u
(7)
t2

ln
k1 n t4

δ

t
h

*

0

1
Hight tLow

(1) (2) (3) (4) (5) (6) (7) (8)

+

Stopping rule: Terminate iff
(

p̂t

l t
∗

+ β(ut

l t
∗

, t)

)

−

(

p̂t

ht
∗

− β(ut

ht
∗

, t)

)

< ǫ.

Sampling strategy:

On round t: sample arms ht
∗

and l t
∗

.
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Thank you!
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