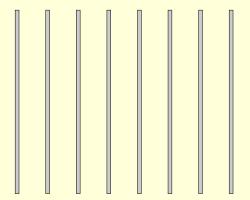
PAC Subset Selection in Stochastic Multi-armed Bandits

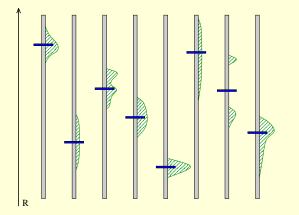
Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone

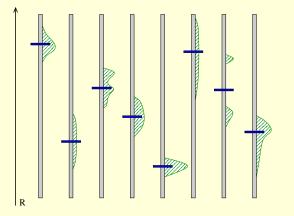
Yahoo! Labs Bangalore Department of Computer Science, The University of Texas at Austin Chair for Information Technology, University of Leoben

July 2012

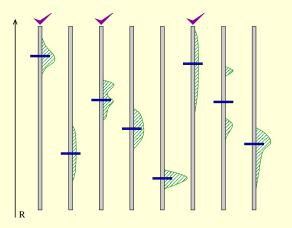


ጥ					
R					

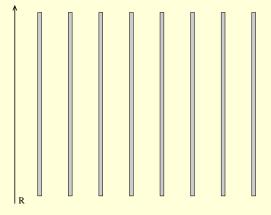




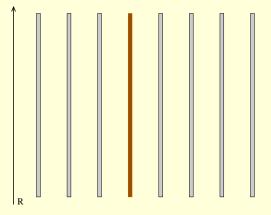
In an *n*-armed bandit:



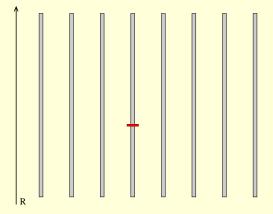
In an *n*-armed bandit:



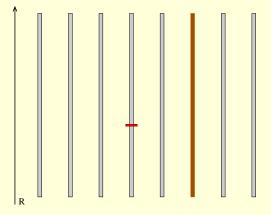
In an *n*-armed bandit:



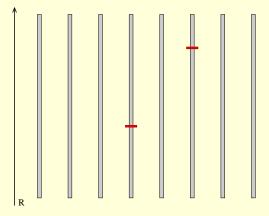
In an *n*-armed bandit:



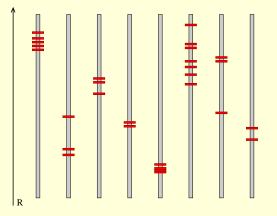
In an *n*-armed bandit:



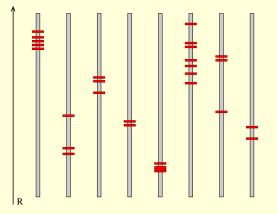
In an *n*-armed bandit:



In an *n*-armed bandit:

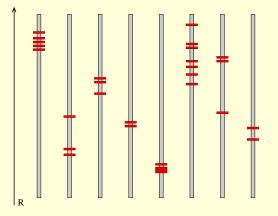


In an *n*-armed bandit:



In an *n*-armed bandit:

find the *m* arms with the highest means for a given confidence

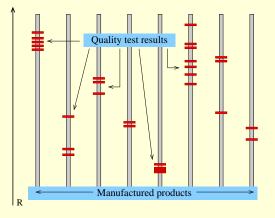


In an *n*-armed bandit:

find the *m* arms with the highest means

for a given confidence

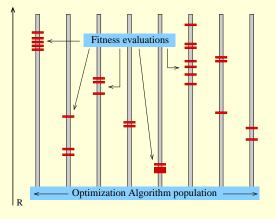
using a minimal number of samples.



In an *n*-armed bandit:

find the *m* arms with the highest means for a given confidence

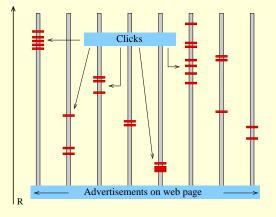
using a minimal number of samples.



In an *n*-armed bandit:

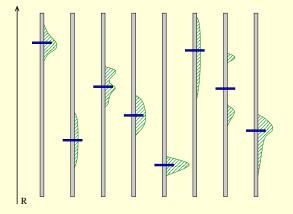
find the *m* arms with the highest means for a given confidence using a minimal number of samples.

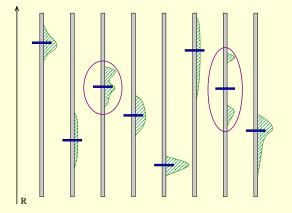
Kalyanakrishnan, Tewari, Auer, and Stone (2012)

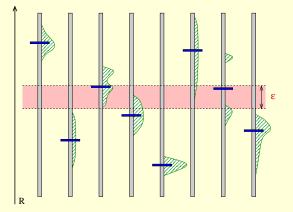


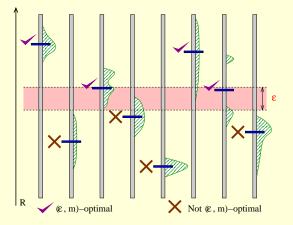
In an *n*-armed bandit:

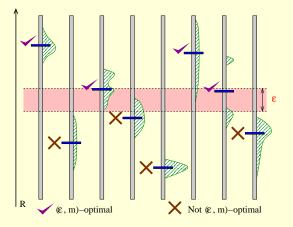
find the *m* arms with the highest means for a given confidence using a minimal number of samples.









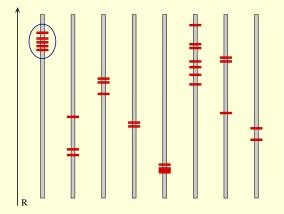


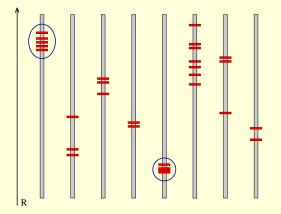
In an *n*-armed bandit:

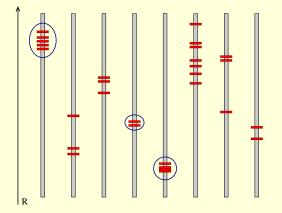
find $m(\epsilon, m)$ -optimal arms with probability at least $1 - \delta$ using a minimal number of samples.

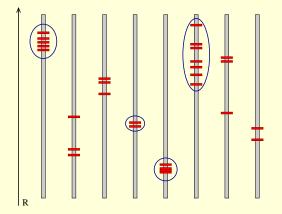
Bandit Variations

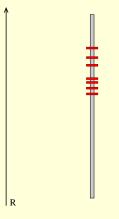
- PAC vs. Regret setting.
- Independent vs. Dependent arms.
- Stochastic vs. Adversarial rewards.

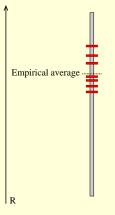


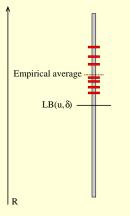


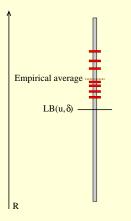








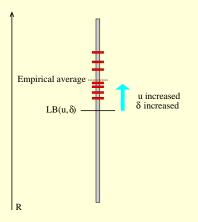




Hoeffding's inequality: With probability at least $1 - \delta$,

True mean \geq Empirical average $-R\sqrt{\frac{1}{2u}log(\frac{1}{\delta})} = LB(u, \delta)$. Empirical Bernstein bound: With probability at least $1 - \delta$,

True mean
$$\geq$$
 Empirical average $-(\sqrt{\frac{\sigma^2 \log(\frac{3}{\delta})}{2u}} + \frac{3R\log(\frac{3}{\delta})}{2u}) = LB(u, \sigma^2, \delta).$



Hoeffding's inequality: With probability at least $1 - \delta$,

True mean \geq Empirical average $-R\sqrt{\frac{1}{2u}log(\frac{1}{\delta})} = LB(u, \delta)$. Empirical Bernstein bound: With probability at least $1 - \delta$,

True mean
$$\geq$$
 Empirical average $-(\sqrt{\frac{\sigma^2 \log(\frac{3}{\delta})}{2u}} + \frac{3R\log(\frac{3}{\delta})}{2u}) = LB(u, \sigma^2, \delta).$

Algorithms for Subset Selection

- DIRECT Algorithm:

Sample each arm $\lceil \frac{2}{\epsilon^2} \log \frac{n}{\delta} \rceil$ times. Return *m* arms with highest *empirical* averages.

- Achieves PAC guarantee.
- Sample complexity: $O(\frac{n}{\epsilon^2} \log(\frac{n}{\delta}))$.

Algorithms for Subset Selection

- DIRECT Algorithm:

Sample each arm $\left[\frac{2}{\epsilon^2} \log \frac{n}{\delta}\right]$ times. Return *m* arms with highest *empirical* averages.

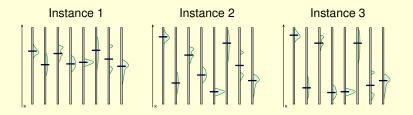
- Achieves PAC guarantee.
- Sample complexity: $O(\frac{n}{\epsilon^2} log(\frac{n}{\delta}))$.
- HALVING Algorithm:

Sample each arm $u_1(m, \epsilon, \delta)$ times. Discard half the arms with lower empirical averages. Sample each remaining arm $u_2(m, \epsilon, \delta)$ times. Discard half the remaining arms with lower empirical averages.

Until m arms remain.

- Achieves PAC guarantee.
- Sequence (u_i) such that total number of samples is $O(\frac{n}{c^2} log(\frac{m}{\delta}))$.
- Optimal up to a constant factor.

Problem Complexity



$$\Delta_a \stackrel{\text{def}}{=} \begin{cases} p_a - p_{m+1} & \text{if } 1 \le a \le m, \\ p_m - p_a & \text{if } m+1 \le a \le n. \end{cases}$$
$$\mathbf{H}^{\epsilon/2} = \sum_{a=1}^n \frac{1}{\max\{\Delta_a, \frac{\epsilon}{2}\}^2}.$$

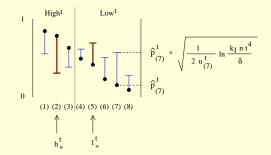
Kalyanakrishnan, Tewari, Auer, and Stone (2012)

Algorithms for Subset Selection (contd.)

- LUCB Algorithm:

Achieves PAC guarantee.

Expected sample complexity of $O\left(H^{\epsilon/2}\log\left(\frac{H^{\epsilon/2}}{\delta}\right)\right)$.



$$\frac{\text{Stopping rule: Terminate iff}}{\left(\hat{p}_{l^t_*}^t + \beta(u_{l^t_*}^t, t)\right) - \left(\hat{p}_{h^t_*}^t - \beta(u_{h^t_*}^t, t)\right) < \epsilon.$$

Sampling strategy: On round *t*: sample arms h_*^t and l_*^t .

Thank you!