Hierarchical Reinforcement Learning

George Konidaris gdk@cs.brown.edu

Why Hierarchies?

Skill Hierarchies

Hierarchical RL: base hierarchical control on skills.

- Component of behavior.
- Performs continuous, low-level control.
- Can treat as discrete action.

Behavior is modular and compositional.

Forms of Abstraction

Abstraction for General Al

$$\langle \bar{S}, \bar{A}, R, T, \gamma \rangle$$

The Options Framework

Options

Options Framework: theoretical basis for skill acquisition, learning and planning using higher-level actions (options).

RL typically solves a single problem monolithically.

Action abstraction:

- Create and use higher-level macro-actions.
- Problem now contains subproblems.
- Each subproblem is also an RL problem.

[Sutton, Precup, and Singh, 1999]

Hierarchical RL

Hierarchical RL

Skill

Problem

The Options Framework

An option is one formal model of a skill.

An option o is a policy unit:

- Initiation set $I_o:S \to \{0,1\}$
- Termination condition $eta_o:S o[0,1]$
- Option policy $\pi_o: S \times A \to [0,1]$

[Sutton, Precup and Singh 1999]

Actions as Options

A primitive action a can be represented by an option:

•
$$I_a(s) = 1, \forall s \in S$$

•
$$\beta_a(s) = 1, \forall s \in S$$

•
$$\pi_a(s,b) = \begin{cases} 1 & a=b\\ 0 & \text{otherwise} \end{cases}$$

A primitive action can be executed anywhere, lasts exactly one time step, and always chooses action *a*.

Questions

Given an MDP:

$$(S, A, R, T, \gamma)$$

... let's replace A with a set of options O (some of which may be primitive actions).

- How do we characterize the resulting problem?
- How do we plan using options?
- How do we learn using options?
- How do we characterize the resulting policies?

SMDPs

The resulting problem is a Semi-(Markov Decision Process). This consists of:

- S
- O
- \bullet P(s',t|o,s)
- R(s', s, t)
- \bullet γ

Set of states

Set of options

Transition model

Reward function

Discount factor (per step)

In this case:

- All times are natural numbers.
- "Semi" here means transitions can last t timesteps.
- Transition and reward function involve time taken for option to execute.

Options define a Semi-Markov Decison Process (SMDP)

Discrete time Homogeneous discount

Continuous time
Discrete events
Interval-dependent discount

Discrete time
Overlaid discrete events
Interval-dependent discount

A discrete-time SMDP <u>overlaid</u> on an MDP Can be analyzed at either level

Advantages of Dual MDP/SMDP View

At the SMDP level

Compute *value functions and policies over options* with the benefit of increased speed / flexibility

At the MDP level

Learn *how* to execute an option for achieving a given goal

Between the MDP and SMDP level

Improve over existing options (e.g. by terminating early)

Learn about the effects of several options in parallel, without executing them to termination

Planning?

Easy

$$Q^\pi(s,o)=\mathbb{E}_{t,s'}[R(s',s,t)]+\mathbb{E}_{t,s'}[\gamma^t\pi(s',\phi')Q^\pi(s',o')]$$
 where

$$\mathbb{E}_{t,s'}[R(s',s,t)] = \sum_{t,s'} P(s',t|o,s)R(s',s,t)$$

$$\mathbb{E}_{t,s'}[\gamma^t \pi(s',o')Q^{\pi}(s',o')] = \sum_{t,s'} P(s',t|o,s)\gamma^t \pi(s',o')Q^{\pi}(s',o')$$

All things flow from Bellman.

option model

Learning and Planning

$$Q^{\pi}(s,o) = \mathbb{E}_{t,s'}[R(s',s,t)] + \mathbb{E}_{t,s'}[\gamma^t \pi(s',o')Q^{\pi}(s',o')]$$

For learning:

- Stochastic samples.
- Use SMDP Bellman equation.

For planning:

Synchronous Value Iteration via SMDP Bellman eqn

4 stochastic primitive actions

8 multi-step options (to each room's 2 hallways)

Target Hallway

(Sutton, Precup and Singh, AlJ 1999)

Primitive options $\mathcal{O}=\mathcal{A}$

Hallway options $\mathcal{O}=\mathcal{H}$

Initial Values

Iteration #1

Iteration #2

Primitive and hallway options $\mathcal{O}=\mathcal{A}\cup\mathcal{H}$

Initial values

Iteration #3

Iteration #1

Iteration #4

Iteration #5

(Sutton, Precup and Singh, AIJ 1999)

Final note: policies.

A policy over an MDP with primitive actions is a Markov policy:

$$\pi: S \times A \to [0,1]$$

A policy over an MDP with options could also be Markov:

$$\pi: S \times O \rightarrow [0,1]$$

... but this could imply a policy in the original MDP that is not, because the probability of taking an action at a state depends on the option currently running.

Option A

Option B

So

A Markov policy for an SMDP may result in a semi-Markov policy for the underlying MDP.

(Even if the options are Markov options!)

Here, semi-Markov means that the probability of taking a primitive action at each step depends on more than the current state.

What are Options For?

Lots of things!

A few salient points:

- Rewiring.
- Transfer.
- Skill-Specific State Abstractions.

Rewiring

Adding an option changes the connectivity of the MDP. This affects:

- Learning and planning.
- Exploration.
- State-visit distribution.
- Diameter of problem.

4 stochastic primitive actions

8 multi-step options (to each room's 2 hallways)

Transfer

Use experience gained while solving one problem to improve performance in another.

Skill transfer:

- Use options as mechanism for transfer.
- Transfer components of solution.
- Can drastically improve performance
- ... even if it takes a lot of effort to learn them.

General principle: subtasks recur.

Transfer

Tasks drawn from parametrized family.

Common features present.

Options defined using only common features.

(a) Learning curves for agents with problem-space options.

(b) Learning curves for agents with agent-space options, with varying numbers of training experiences.

Skill-Specific Abstractions

Options provide opportunities for abstraction

- Split high-dimensional problem into subproblems ...
- ... such that each one supports a solution using an abstraction.

Working hypothesis: behavior is modular and compositional **and piecewise low-dimensional.**

Skill Acquisition

Skill Discovery

Where do skills come from?

Research goal: discover options autonomously, through interaction with an environment.

- Typically subgoal options.
- This means that we must determine β_o .
- Sometimes also R_o .

The question then becomes:

Which states are good subgoals?

Betweenness Centrality

Consider an MDP as a graph.

- States are vertices.
- Edges indicate possible transition between two states.

Further, let us assume a task distribution over start states and goal pairs:

$$\bullet P_T(s,e)$$

Betweenness Centrality

We can define the betweenness centrality of a vertex (state) as:

$$\sum_{s,e} \frac{\sigma_{se}(v)}{\sigma_{se}} w_{se}$$

This indicates it probability of being on a shortest path from s to e; if we define:

- Shortest path as optimal solution.
- $w_{se} = P_T(s, e)$

... then we get something sensible for RL.

(Simsek and Barto, 2008)

Betwenness Centrality

(Simsek and Barto, 2008)

Betweenness Centrality

Figure 3: Learning performance in Rooms, Shortcut, and Playroom.

(Simsek and Barto, NIPS 2008)

Covering Options

More modern:

- Formulate a specific objective
- Find options with formal link to objective

E.g., finding options to aid with exploration:

- "the difficulty of discovering a distant rewarding state in an MDP is bounded by the expected cover time of a random walk over the graph induced by the MDP's transition dynamics"
- · Therefore, find options to minimize cover time.
- This is NP-Hard.
- Bounded-suboptimal approximation algorithm.

[Jinnai et al., 2019]

What About Continuous Domains?

Skill Chaining

Executing one skill should either:

- Solve the problem.
- Let you execute another skill that could solve the problem.

Skills should be chainable.

[Konidaris and Barto, NIPS 2009]

Skill Chaining

Skill Chaining: Results

Skill Chaining: Results

Skill Chaining: Results

Deep Skill Chaining

[Bagaria and Konidaris, in submission]

Option-Critic (Bacon et al.)

 Use policy gradient to simultaneously learn high-level policy and option policies / termination conditions

Assume options can be initiated anywhere

 Options are learned based directly on performance, rather than a heuristic!

Feudal Nets (Vezhnevits et. al)

- Manager module sets goals for the worker and receives environmental reward
- Worker module is rewarded for completing goals set by manager
- Learns to set and accomplish goals that are best for optimizing expected return no heuristics