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Safety and Correctness in Robotics




What does it mean for a learning agent to be “safe’”?

Formal safety: A self-driving car that will provably never crash if some model holds
Risk-sensitive safety: A stock market agent with bounded value-at-risk

Robust safety: An image classifier resistant to data poisoning or adversarial examples
Monotonic safety: An RL-based advertising policy that always improves with high probability

Safe exploration: A walking robot that can explore new garts without falling over

More complete taxonomy: D.Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané.
"Concrete problems 1n Al safety."



A proposed definition of safety:
Safety = Correctness + Confidence

Correctness: Meeting or exceeding a measure of performance

Confidence: A (probabilistic) guarantee of correctness



A spectrum of safety

Guaranteed Probabilistic

e ———————————

Require perfect models Sample inefficient

Verification / synthesis PAC-M

DP methods

[Kress-Gazit et. al 2009] [Singh et. al 2002]
[Raman et. al 2015] [Fu and Topcu 2014]

Concentration inequalities

[Thomas et.al 2015]
[Bottou et. al 201 3]
[Abbeel and Ng 2004]
[Syed and Schapire 2008]

Approximate

No guarantees

KL-divergence constraints

[Schulman et. al 201 5]
[Schulman et.al 201 7]
[Peters et.al 2010]

Address bad assumptions!



Part |: Safe reinforcement learning



Background

State s,

[ :( Agent >

Reward r,

Actlon a,

|
:4 fies

_ : ( Environment )4—1
l

m Finite-horizon MDP.

m Agent selects actions with a stochastic policy,

m [ he policy and environment determine a distribution over
trajectories, H : 5q, Ao, Ry, 51, A1, Ry, ..., 5., AL, R,



Safe off-policy evaluation (OPE):

Determine a probabilistic lower bound on expected performance
of a policy, given data generated by a different policy

Safe policy improvement (Pl):

-nsure that expected performance improves monotonically at %
every learning step with high confidence

Time / Data —™



Policy Evaluation

Policy performance:

L
V(T('): D [Zytﬂ’t H ~
t=0

Given a target policy, 7, estimate V()

mlet m, = 7y,



Monte Carlo Policy Evaluation

Given a dataset D of trajectories where VH € D,
H ~ 7.:




Importance Sampling Policy Evaluation!

Given a dataset D of trajectories where VH,; € D,
H; is sampled from a behavior policy 7;:

1S Te At|5t L tR(i)
Z H mi(At|St) Zﬁy t

re-weighting factor

For convenience:

L

(A S)
IS(H, 7) := H” A:“"Stt ZVth

t=0 t=0

LPrecup, Sutton, and Singh (2000)



Confidence Intervals for Off-Policy Evaluation

Given:

m Irajectories generated by a behavior policy, mp,
{H, 7Tb} cD.

m An evaluation policy, ..

m 0 € [0,1] is a confidence level.

Determine a lower bound Vio(7e, D) such that V()
Vib(7e, D) with probability 1 — §.

>




Concentration Inequalities

Chernoff-Hoeffding Inequality
m Probabilistic bound on how a random variable deviates
from 1ts expectation
m No distributional assumptions
m With probability at least 1-9:
> 150 X /B

m Can use with importance sampled returns to bound value
of a policy from off-policy samples

m Significantly tighter bounds exist under certain conditions
(Thomas et. al 2015)



Sample (in)efficiency (Thomas et. al 2015)
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Figure 3: 95% confidence lower bound (unnormalized) on
p(0) using trajectories generated using the simulator de-
scribed 1n the text. The behavior policy’s true expected re-



Bad assumption #1:

“When performing policy evaluation, it is better
to collect on-policy data than off-policy data”

J.P. Hanna, P.S. Thomas, P. Stone, and S. Niekum.

Data-Efficient Policy Evaluation Through Behavior Policy Search.
Proceedings of the 34th International Conference on Machine Learning (ICML), August 2017.



http://www.cs.utexas.edu/users/sniekum/pubs/HannaBPG.pdf

Optimal Behavior Policy

Claim: There exists an optimal behavior policy, mp«, If all returns
are positive and transitions are deterministic:



Optimal Behavior Policy

Claim: There exists an optimal behavior policy, mp«, If all returns
are positive and transitions are deterministic:

L

_ Te(At|St)
V(r.) =g(H) tl;[o e (AS)
L
H Tpx (A St) = g(H) H Te(A¢|St)
t=0 V() t=0
_sg(H)
Wﬁb*(H) _V(T‘-e) 7Te(H)

/ero mean squared error with a single trajectory!|Such a policy

provably exists as a mixture over time-dependent deterministic
policies (i.e. weighted trajectories).



Optimal Behavior Policy

Unfortunately, the optimal behavior policy is unknown in practice.

L
1) T melAdl o)

(7e) t=0

L
Hﬂb*(At\St) = 5
t=0

m Requires V(7.) be known!
m Requires the reward function be known.

m Requires deterministic transitions.



Behavior Policy Gradient

Key ldea: Adapt the behavior policy parameters, 6, with
gradient descent on the mean squared error of
importance-sampling.

0
9,‘+1 — 9,‘ — Oéa—g MSE['S(H,, 9)]

m MSE[/IS(H, 0)] is not computable.

= -5 MSE[IS(H, 0)] is computable.



Behavior Policy Gradient Theorem

(,% MSE(IS(H,8)) = E, |—IS(H,0)> ) (% log (mg(Ae|St))

0

t



Variance

Variance reduction
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Mean Squared Error
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Improved sample efficiency
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Better, but not good enough.

» Are “semi-safe”’, consistent methods good enough?
(e.g. bootstrapping)

* Why only use model-free methods!



Bootstrap Confidence Intervals

D

Sample with
replacement

Estimate

(v.)
! @

V(7e)




Model-Based Bootstrap

Sample with
replacement

Model-based

Estimate
'

O



Model-Based Bootstrap

Sample with
replacement

Model-based
Estimate

Biased! -

(D



Bad assumption #2:

“Biased models lead to biased estimators”

J.P. Hanna, P. Stone, and S. Niekum.

Bootstrapping with Models: Confidence Intervals for Off-Policy Evaluation.
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), May 2017.



http://www.cs.utexas.edu/users/sniekum/pubs/AAMAS2017.pdf

Doubly Robust Estimator
[Jiang and Li 2016; Thomas and Brunskill 2016]

DR(D) = PDIS(D) 5" wia(55 A) - wl_,57(5)
Unbiased estimator i=1 t=0

Zero In Expectation

T

mV"(S) = 43A~w,5'~ﬁ>(-|5,A) r(S,A)+ v(S)] Control variate
m State value function.

n 8]”(5, A) = I’(S, A) -+ “35/Np(.|57,4) [\7(5’)] '
m State-action value function. 2

m w; Is the importance weight of the first t time-steps.



Weighted Doubly Robust Bootstrap

Sample with
replacement

@ ' @
()

Weighted Doubly
Robust Estimate

Y
v




Weighted Doubly Robust Bootstrap

Sample with
replacement

@ ' @
()

Weighted Doubly
Robust Estimate I

Unbiased! -
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Similar ideas apply to safe policy improvement:

Loop:
|. Propose a policy (e.g. via an unsafe RL step)

2. Perform safe policy evaluation

3. Accept or reject



Putting it all together: Safe Pl challenge problem

Initial Hand Coded Walk Learned Walk
Hand coded walk (19.5 cm/s) Best known walk (28 cm/s)
—_————)

Without falling (more) during learning?



Part 2: Safe imitation learning



Imitation learning




Safe Imitation Learning:

Lower bound the performance ratio of the robot vs. human demonstrator with
high confidence, without knowing the ground-truth reward function.




Inverse reinforcement learning: feature matching
(Abbeel and Ng 2004)

E:x:ﬁo VtR(St)W

E 7~ oYw- ¢(s)
w- B[}~ o7 é(st)

Policy value under linear reward function: Es,~p[V™(s0)]

(Discounted) feature expectations: uw(m) = E[Y o2 a7y o(se)|m] € RE.

Goal: find a reward function whose optimal
policy matches experts feature expectations

If expert’s feature expectations are matched,
then total return is also identical




Hoeffding-style bound (w.r.t. projection IRL algorithm)
(Abbeel and Ng 2004, Syed and Schapire 2008)

Theorem 2. (Syed and Schapire 2008) To obtain a policy 7 such
that with probability (1 — §)

e> |VF(R*) = V™ (RY)] (26)

it suffices to have

m > 2 log % (27)

~ (A=) 76

Corollary 2. Given a confidence level 0, and m demonstrations,
with probability (1 — §) we have that |V™ (R*) — V*(R*)| < ¢,

where

e < : \/zlog% (28)
l—vVm )

where k is the number of features and 7y is the discount factor of
the underlying MDP.



Bad assumption #3:

“Worst-case reasoning is the best we can do if we
don’t know the ground-truth reward function”

D.S. Brown and S. Niekum.
Efficient Probabilistic Performance Bounds for Inverse Reinforcement L.earning.

AAAI Conference on Artificial Intelligence, February 2018.

D.S. Brown, Y. Cul, and S. Niekum.
Risk-Aware Active Inverse Reinforcement I.earning.
Conference on Robot Learning (CoRL), October 2018.



https://arxiv.org/abs/1707.00724
http://www.cs.utexas.edu/users/sniekum/pubs/BrownCuiCORL2018.pdf

Rethinking feature expectations

Problem |: Hoeffding method bounds the features expectations,
which in turn, bounds loss under a worst-case reward function,
regardless of its likelihood given the demonstrations

Problem 2: Feature expectation methods cannot learn from
state-action pairs that aren’t part of a full trajectory



Bayesian Inverse Reinforcement Learning (BIRL)
[Ramachandran and Amir 2007]

* Use MCMC to sample from posterior:

P(R|D) « P(D|R)P(R)

* Assume demonstrations follow softmax policy with temperature c:
GCQ* (s,a,R)

P(D|R) = o
(s,g[eD D pea €9 (5,0, )



Value at risk

vo(Z) = F,;'(a) = inf{z : Fz(2) > o}

Loss




Value at risk

vo(Z) = F;'(a) = inf{z : Fz(2) > a}

Loss

+

Single-sided confidence bound

“With probability 1 — 4, no more than 1 — &% of the outcomes will be worse than X”

Goal: Solve for X and check if it is below acceptable risk level



---------

(Active) Safe IRL Pipeline

Bayesian IRL \

>k
Rvar 2 "TMAP
Ri = Tp.

-

Vi, ' (5) = VR 7 (s)

Find state with

maximum VaR E <:

\_

Calculate policy losses

sk
7TR7:

~

/

@

-

Policy Loss

Calculate Value at Risk

| L~ a-VaR(S)
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Results: efficiency (no active learning)

Number of demonstrations Average Accuracy
1 5 0 ... 23,146
0.95-VaR EVD Bound 0.9372 0.2532 0.1328 - 0.98
0.99-VaR EVD Bound 1.1428 0.2937 0.1535 - 1.0
EVD Bound (Syed and Schapire 2008) 142.59 63.77  47.53 0.9372 1.0

Table 1: Comparison of 95% confidence a-VaR bounds with a 95% confidence Hoeffding-style bound (Syed and Schapire
2008). Both bounds use the Projection algorithm (Abbeel and Ng 2004) to obtain the evaluation policy. Results are averaged
over 200 random navigation tasks.

Four orders of magnitude more data efficient!



Risk-sensitive preferences

@ © Driving Task Simulation

Demonstration: avoids cars, no lane pref

© ® Driving Task Simulation @ & Driving Task Simulation -~

Driving Task Simulation

.

Avoids cars, but prefers right lane Stays on road, but ignores other cars Seeks collisions

2



Risk-sensitive preferences (feature count-based)

@ © Driving Task Simulation

Demonstration: avoids cars, no lane pref

(x f— Driving Task Simulation (x M — DriVing Task Simulation - Drlving Task Simulation

2 .

Avoids cars, but prefers right lane Stays on road, but ignores other cars Seeks collisions



Risk-sensitive preferences (our approach)

@ © Driving Task Simulation

Demonstration: avoids cars, no lane pref

(x f— Driving Task Simulation (x M — DriVing Task Simulation - Drlving Task Simulation

2 .

Avoids cars, but prefers right lane Stays on road, but ignores other cars Seeks collisions



Risk-sensitive policy search

Demo Min VaR policy MLE policy



2 ~N
Y. Cui and S. Niekum. S
Active Reward Learning from Critiques.

IEEE International Conference on Robotics and
Automation (ICRA), May 2018.
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Information Gain Estimation from Reward Function Distribution

"""""""""""""""""" 1T B R
Pr(ai ¢ O(s:) | B) = 1= -¢?@sad Pr(a; € O(s) | R) = -c*QC0eh)
Update an action to be good

to be bad

Q 74

Likelihood
Likelihood

Reward functions Reward functions



Information Gain Estimation from Reward Function Distribution

Pria: ¢ 0(s) | B) = 1= 20l 1 ) [ Ry = L eeuec
: : Update an action ““""“"““"““"_ _________
e Set of optimal actions at a state: to be bad Updatcteoag actloz
e goo
O(s) = argmax Q™ (s, a)
acA

e Distance Measure:
Dkr(P||Q) = ZP log

e Expected Information Gain:

G*(si,a;) = G(DT U (si,a) | Be(R)) =§rPr(az- c 0(s;) | Be(R):D(Be
G (si,a;) = G(D™ U (si,a:) | Be(R)) =iPr(ai ¢ O(si) | Be(R))D(Be'(R)|| Be(R))




Bad assumption #4:

“Demonstration data should be treated as 1.1.D.”

D.S. Brown and S. Niekum.

Machine Teaching for Inverse Reinforcement I.earning: Algorithms and Applications.
AAAI Conference on Artificial Intelligence, February 2019.



https://arxiv.org/abs/1805.07687

Informative demonstrations

ROBOTICS

L ess informative More informative



Machine teaching

In general: For inverse RL:
ml%n TeachingCost(D) mgn TeachingCost(D)
S.t. TeachingRisk(é) <e€ S.L. Loss(w™, W) < ¢
f = MachineLearning(D) m = RL(W)
W = IRL(D)
where:
Loss(w™, W) = W*T(,LLW* — ll#)

TeachingCost(D) = |D|



Behavioral Equivalence Classes (BEC)

BEC(7) =
{w € R" | 7is optimal under R(s) = w” ¢(s)}.

Theorem 1. (Ng and Russell 2000) Given an MDP, BEC(T)
is given by the following intersection of half-spaces:

wh (s — pls?) > 0,

Va € argn}gﬁQ*(s,a'),b cAseS

Corollary 1. BEC(D|r) is given by the following intersec-
tion of half-spaces:

wl(pls — &) >0, V(s,a) € D,b € A.

1.0
0.5
0.0, y
-0.5 '
£ 4
9% -05 0.0 05 1.0
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Set Cover Optimal Teaching (SCOT)

Over-complete Under-complete Info-optimal

0.5 - 0.5 /
™ ™
3 0.0 _ - 3 0.0¢

//‘/
—0.5/ | —0.5]
P
L9 —05 00 05 1.0 L9505 00 05 10
Wy Wo

Submodular = greedy algo approximate optimal!



Information-optimal teaching efficiency
vs. [Cakmak and Lopes 2012]

Ave. number of (s,a) pairs  Ave. policy loss  Ave. % incorrect actions ~ Ave. time (S)

UVM (10°) 5.150 1.539 31.420 567.961

UVM (10%) 6.650 1.076 19.568 1620.578

UVM (107) 8.450 0.555 18.642 10291.365
SCOT 17.160 0.001 0.667 0.965

More accurate AND several orders of magnitude more efficient



Bayesian Info-Optimal Inverse Reinforcement Learning (BIO-IRL)

P(D|R) x Puto(DIR) - || P((s,0)|R)
(s,a)€D

Pinto(D|R) ox exp(—A - infoGap(D, R))

Prefer rewards that imply expert is both behaviorally
optimal and (approximately) information-optimal



Bayesian Info-Optimal Inverse Reinforcement Learning (BIO-IRL)

P(D|R) x Puto(DIR) - || P((s,0)|R)
(s,a)€D

Pinto(D|R) ox exp(—A - infoGap(D, R))
!

N-demo remaining volume Ideally: purple / (red + blue)
N-optimal remaining volume

Approx: greedy hyperplane matching + angular distance
Intersection of volumes

Prefer rewards that imply expert is both behaviorally
optimal and (approximately) information-optimal



Example results: I.1.D. vs. information-optimality assumptions

1.0

Chain MDP Polic Candldates
- '_ /“O/" e oty | A .‘\QO O O .

SN N _806
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502 BB BIO-IRL \=1
B BIO-IRL A=10
0.0 [ i1

ABCD ABCD ABCD
Policy Candidates



Efficiency gain: |.I.D. vs. information-optimality assumptions

35

$-4 BIRL
301 44 BIO-IRL |

251 '
20+ '\
15¢

10t

% incorrect actions

Number of demonstrated trajectories



Summary

Re-evaluating bad assumptions for efficient safe RL and imitation learning

* When performing policy evaluation, it is better to collect
on-policy data than off-policy data

 Biased models lead to biased estimators

*  Worst-case reasoning is the best we can do if we don't
know the ground-truth reward function

« Demonstration data should be treated as |.1.D.



