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A Game

Coin 1 Coin 2 Coin 3

P{heads} = p1 P{heads} = p2 P{heads} = p3

� p1, p2, andp3 areunknown.

� You are given a total of 20 tosses.

� Maximise the total number of heads!
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� On-line advertising: Template optimisation

CARS

CARS

Cars
?

� Clinical trials (Robbins, 1952)

� Packet routing in communication networks (Altman, 2002)

� Game playing and reinforcement learning (Kocsis and Szepesvári, 2006)
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Overview

1. Problem definition

2. Two natural algorithms

3. Lower bound

4. Two improved algorithms

5. Conclusion
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Stochastic Multi-armed Bandits
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Stochastic Multi-armed Bandits
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� n arms, each associated with a Bernoulli distribution.

� Arm a has meanpa.

� Highest mean isp∗.
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One-armed Bandits
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"
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We desire an algorithm that minimises regret!
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Overview

1. Problem definition

2. Two natural algorithms

3. Lower bound

4. Two improved algorithms

5. Conclusion
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ǫ-Greedy Strategies

� ǫG1(parameterǫ ∈ [0, 1] controls the amount of exploration)
- If t ≤ ǫT, sample an arm uniformly at random.
- At t = ⌊ǫT⌋, identify abest , an arm with the highest empirical mean.
- If t > ǫT, sampleabest .
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� Test instanceI1: n = 20; means = 0.01, 0.02, 0.03, . . . , 0.2; T = 100, 000.

ǫG2 with ǫ = 0.03 denotedǫG∗. Regret of822± 24 over a horizon of 100, 000.
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Softmax Exploration
� Softmax(Sutton and Barto, 1998; see Chapter 2.3)

- At time t, Sample arma with probability proportional toexp
“

αp̂t
aT
t

”

.

� p̂t
a the empirical mean of arma.

� α a tunable parameter that controls exploration.

� One could “anneal” at rates different from1t .
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Softmax withα = 100 denotedSoftmax∗. Regret of720± 13 on
I1 over a horizon ofT = 100, 000.
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Overview

1. Problem definition

2. Two natural algorithms

3. Lower bound

4. Two improved algorithms

5. Conclusion
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A Lower Bound on Regret

Paraphrasing Lai and Robbins (1985; see Theorem 2).

LetA be an algorithm such that for everybandit instanceI and for every
a > 0, asT → ∞:

RT(A, I) = o(Ta).
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LetA be an algorithm such that for everybandit instanceI and for every
a > 0, asT → ∞:

RT(A, I) = o(Ta).

Then, for everybandit instanceI, asT → ∞:

RT(A, I) ≥

0

@

X

a:pa(I) 6=p∗(I)

p∗(I) − pa(I)
KL(pa(I), p∗(I))

1

A log(T).
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Upper Confidence Bounds
� UCB (Auer et al., 2002a)

- At time t, for every arma, defineucbt
a = p̂t

a +

r

2 ln(t)
ut

a
.

- ut
a the number of timesa has been sampled at timet.

R

1

0

p
a
t

ucba
t
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P

a:pa 6=p∗
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,

matching the lower bound from Lai and Robbins (1985).

Regret on instanceI1 (with T = 100, 000)–UCB:1168± 16; KL-UCB: 738± 18.
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Thompson Sampling
� Thompson(Thompson, 1933)

- At time t, let arma havest
a successes (ones) andf t

a failures (zeroes).

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits 16 / 21



16/21

Thompson Sampling
� Thompson(Thompson, 1933)

- At time t, let arma havest
a successes (ones) andf t

a failures (zeroes).

- Beta(st
a + 1, f t

a + 1) represents a “belief” about the true mean of arma.

- Mean =
st
a+1

st
a+f t

a+2 ; variance =
(st

a+1)(f t
a+1)

(st
a+f t

a+2)2(st
a+f t

a+3)
.

R

1

0

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits 16 / 21



16/21

Thompson Sampling
� Thompson(Thompson, 1933)

- At time t, let arma havest
a successes (ones) andf t

a failures (zeroes).

- Beta(st
a + 1, f t

a + 1) represents a “belief” about the true mean of arma.

- Mean =
st
a+1

st
a+f t

a+2 ; variance =
(st

a+1)(f t
a+1)

(st
a+f t

a+2)2(st
a+f t

a+3)
.

R

1

0

- Computational step: For every arma, draw a samplext
a ∼ Beta(st

a + 1, f t
a + 1).

- Sampling step:Sample an arma for which xt
a is maximal.

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits 16 / 21



16/21

Thompson Sampling
� Thompson(Thompson, 1933)

- At time t, let arma havest
a successes (ones) andf t

a failures (zeroes).

- Beta(st
a + 1, f t

a + 1) represents a “belief” about the true mean of arma.

- Mean =
st
a+1

st
a+f t

a+2 ; variance =
(st

a+1)(f t
a+1)

(st
a+f t

a+2)2(st
a+f t

a+3)
.

R

1

0

- Computational step: For every arma, draw a samplext
a ∼ Beta(st

a + 1, f t
a + 1).

- Sampling step:Sample an arma for which xt
a is maximal.

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits 16 / 21



16/21

Thompson Sampling
� Thompson(Thompson, 1933)

- At time t, let arma havest
a successes (ones) andf t

a failures (zeroes).

- Beta(st
a + 1, f t

a + 1) represents a “belief” about the true mean of arma.

- Mean =
st
a+1

st
a+f t

a+2 ; variance =
(st

a+1)(f t
a+1)

(st
a+f t

a+2)2(st
a+f t

a+3)
.

R

1

0

- Computational step: For every arma, draw a samplext
a ∼ Beta(st

a + 1, f t
a + 1).

- Sampling step:Sample an arma for which xt
a is maximal.

� Achievesoptimal regret(Kaufmann et al., 2012); isexcellent in practice
(Chapelle and Li, 2011).

Shivaram Kalyanakrishnan (2014) Multi-armed Bandits 16 / 21



16/21

Thompson Sampling
� Thompson(Thompson, 1933)

- At time t, let arma havest
a successes (ones) andf t

a failures (zeroes).

- Beta(st
a + 1, f t

a + 1) represents a “belief” about the true mean of arma.

- Mean =
st
a+1

st
a+f t

a+2 ; variance =
(st

a+1)(f t
a+1)

(st
a+f t

a+2)2(st
a+f t

a+3)
.

R

1

0

- Computational step: For every arma, draw a samplext
a ∼ Beta(st

a + 1, f t
a + 1).

- Sampling step:Sample an arma for which xt
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On instanceI1 (with T = 100, 000), regret is463± 18.
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Consolidated Results on InstanceI1

Method Regret at T = 100, 000

ǫG∗ 822± 24
Softmax∗ 720± 13
UCB 1168± 16
KL-UCB 738± 16
Thompson 463± 18
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Principle: “Optimism in the face of uncertainty.”
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Overview

1. Problem definition

2. Two natural algorithms

3. Lower bound

4. Two improved algorithms

5. Conclusion
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Discussion

� Challenges and extensions
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Discussion

� Challenges and extensions

- Set of arms can change over time.

- On-line updates not feasible; batch updating needed.

- Rewards are delayed.

- Arms might bedependent; “context” can be modeled (Li et al., 2010).

- Nonstationary rewards; adversarial modeling possible (Auer et al., 2002b).

� Summary

- Adaptive sampling of options, based on stochastic feedback, to maximise total reward.

- Well-studied problem with long history.

- Thompson Sampling is an essentially optimal algorithm.

- Modeling assumptions typically violated only slightly in practice.
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Thank you!
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