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Goal: Learn Agent Behaviors Autonomously

Reinforcement learning algorithms:

Given experience with an
unknown environment
Estimates the value of states
Learns a policy

Problem
How to learn more efficiently?

G
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Intuition: Decompose Tasks into Subtasks

Standard RL assumes flat state
and action spaces.
Real-world applications have
hierarchical structure.
Abstract actions

Represent sequences of
primitive actions
Achieve subgoals
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The Most Popular Framework for Hierarchical RL

Options: analogous to macro-operators
Initiation set (precondition)
Termination function (postcondition)
Option policy (implementation)

Typically used to augment an action space
Can be treated simply as temporally extended actions
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The Benefits of Options

Prior work: options are good
Future work: where do the options come from?

Key Question
How precisely does the addition of options affect learning?
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Replicating Results in Option Discovery

Apply standard Q-learning with ε-greedy exploration
Introduce options after 20 episodes

One option for each of four given subgoals
Option policies learned from experience replay
Initiation set: states that can reach subgoal

G

One of four options
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Hierarchical Reasoning or Additional Computation?

Observation
The technique used to obtain the option policy can also be
used to improve the value function without using options at all!
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Options Can Degrade Learning Performance

Isolating the effect of hierarchy
Give only subgoals (at start)
Learn option policies online

Subgoals can degrade performance initially.
Correct options can severely degrade performance!
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Options Change the Environment Structure

G

Random walk in
original environment

G

Random walk in
augmented environment
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Restricting the Initiation Set

Idea: Limit options to certain states
Requires domain expertise

Initiation set of one option
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Delaying Option Deployment

Idea: wait until value function partially learned
Somewhat brittle

G

Value function on option
deployment
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Options and Optimistic Exploration

Observation
We can blame some of the performance degradation on
random exploration.

Alternative: optimism in
the face of uncertainty
Optimism offers solid
theoretical benefits.
Heuristic implementation:
optimistic initialization of
the value function

Thorough exploration eliminates the impact of options!
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Options that Abstract Instead of Augment

Remove primitive actions superceded by options.

G

Initiation set Availability
of one option of primitive

actions
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Temporal Abstraction in Other Algorithms

Observation
Q-learning may not be the best baseline algorithm for studying
hierarchy.

Q-learning uses each piece of experience exactly once.
It therefore confounds data acquisition (exploration) with
computatation (planning).

See also
In ICML 2008: Jong and Stone, “Hierarchical Model-Based
Reinforcement Learning: R-MAX + MAXQ”

Nicholas K. Jong, Todd Hester, Peter Stone The Utility of Temporal Abstraction in Reinforcement Learning



Motivation
Experimental Results

Summary

Summary

Options do not always help reinforcement learning; in
some cases, they can severely hinder learning.
Hierarchical methods impact learning by biasing or
constraining exploration.
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