Goal:

• Learn how to make decisions by trying to imitate another agent.

Goal:

• Learn how to make decisions by trying to imitate another agent. Conventional Imitation Learning:

 Observations of other agent (demonstrations) consist of state-action pairs.¹

¹Niekum et al., "Learning and generalization of complex tasks from unstructured demonstrations".

Goal:

• Learn how to make decisions by trying to imitate another agent. Conventional Imitation Learning:

 Observations of other agent (demonstrations) consist of state-action pairs.¹

Goal:

• Learn how to make decisions by trying to imitate another agent. Conventional Imitation Learning:

 Observations of other agent (demonstrations) consist of state-action pairs.¹

Challenge:

• Precludes using a large amount of demonstration data where action sequences are not given (e.g. YouTube videos).

¹Niekum et al., "Learning and generalization of complex tasks from unstructured demonstrations".

Algorithms:

Algorithms:

• Behavioral Cloning:

Algorithms:

- Behavioral Cloning:
 - End to End Learning for Self-Driving Cars.²

²Zhang and Cho, "Query-Efficient Imitation Learning for End-to-End Simulated Driving."

Algorithms:

- Behavioral Cloning:
 - End to End Learning for Self-Driving Cars.²
- Inverse Reinforcement Learning:

²Zhang and Cho, "Query-Efficient Imitation Learning for End-to-End Simulated Driving."

Algorithms:

- Behavioral Cloning:
 - End to End Learning for Self-Driving Cars.²
- Inverse Reinforcement Learning:
 - Generative Adversarial Imitation Learning.³
 - Guided Cost Learning.⁴

Peter Stone

²Zhang and Cho, "Query-Efficient Imitation Learning for End-to-End Simulated Driving."

³Ho and Ermon, "Generative adversarial imitation learning".

⁴Finn, Levine, and Abbeel, "Guided cost learning: Deep inverse optimal control via policy optimization".

Goal:

• Learn how to perform a task given state-only demonstrations.

Goal:

• Learn how to perform a task given state-only demonstrations.

Goal:

• Learn how to perform a task given state-only demonstrations.

Formulation:

- Given:
 - $D_{demo} = (s_0, s_1, ...)$
- Learn:
 - $\pi: \mathcal{S} \to \mathcal{A}$

Previous work:

Previous work:

- Time Contrastive Networks (TCN).⁵
- Imitation from observation: Learning to imitate behaviors from raw video via context translation.⁶
- Learning invariant feature spaces to transfer skills with reinforcement learning.⁷

Peter Stone

⁵Sermanet et al., "Time-contrastive networks: Self-supervised learning from multi-view observation".

⁶Liu et al., "Imitation from observation: Learning to imitate behaviors from raw video via context translation".

⁷Gupta et al., "Learning invariant feature spaces to transfer skills with reinforcement learning".

Previous work:

- Time Contrastive Networks (TCN).⁵
- Imitation from observation: Learning to imitate behaviors from raw video via context translation.⁶
- Learning invariant feature spaces to transfer skills with reinforcement learning.⁷

Concentrate on perception; require time-aligned demonstrations.

Peter Stone

⁵Sermanet et al., "Time-contrastive networks: Self-supervised learning from multi-view observation".

⁶Liu et al., "Imitation from observation: Learning to imitate behaviors from raw video via context translation".

⁷Gupta et al., "Learning invariant feature spaces to transfer skills with reinforcement learning".

Efficient Robot Skill Learning

- Motivation: RoboCup
- Sim2Real: Grounded Simulation Learning
- Imitation Learning from Observation:
 - Model-based approach: BCO
 - Model-free approach: GAIfO

Model-based Approach

• Imitation Learning: $D_{demo} = \{(s_0, a_0), (s_1, a_1), ...\}$

Model-based Approach

• Imitation Learning: $D_{demo} = \{(s_0, a_0), (s_1, a_1), ...\}$ • Imitation from Observation: $D_{demo} = \{(s_0, ?), (s_1, ?), ...\}$

Model-based Approach

Imitation Learning: D_{demo} = {(s₀, a₀), (s₁, a₁), ...}
Imitation from Observation: D_{demo} = {(s₀, ?), (s₁, ?), ...}

Model-based Approach:

Torabi, Warnell, and Stone, IJCAI 2018

- Domain:
 - Mujoco domain "Ant" with 111 dimensional state space and 8 dimensional action space.

Issue:

• Inverse dynamics model is learned using a random policy.

Issue:

• Inverse dynamics model is learned using a random policy.

Issue:

• Inverse dynamics model is learned using a random policy.

Solution: $BCO(\alpha)$

• Update the model with the learned policy.

Issue:

• Inverse dynamics model is learned using a random policy.

- Update the model with the learned policy.
- Parameter α controls tradeoff between performance and environment interactions

Issue:

Inverse dynamics model is learned using a random policy.

- Update the model with the learned policy.
- Parameter α controls tradeoff between performance and environment interactions
 - $\alpha = 0$: no post-demonstration interaction.

Issue:

• Inverse dynamics model is learned using a random policy.

- Update the model with the learned policy.
- Parameter α controls tradeoff between performance and environment interactions
 - $\alpha = 0$: no post-demonstration interaction.
 - Increasing α: increasing the number of interactions allowed at each iteration.

Algorithm:

Algorithm:

Interaction time:

Effect of varying α on BCO(α):

Effect of varying α on BCO(α):

Effect of varying α on BCO(α):

Efficient Robot Skill Learning

- Motivation: RoboCup
- Sim2Real: Grounded Simulation Learning
- Imitation Learning from Observation:
 - Model-based approach: BCO
 - Model-free approach: GAlfO

Gen. Adversarial Imitation from Observation (GAIfO)

(b) Demonstration

Figure: State transition distribution in Hopper domain.

Gen. Adversarial Imitation from Observation (GAIfO)

Algorithm:

