One solution to interactive shaping

Reward from a human trainer:

- Trainer has long-term impact in mind.
 - We can consider reward a full judgment of desirability of behavior.
- Trainer can reward with small delay.

Teaching an Agent Manually via Evaluative Reinforcement (**TAMER**)

Learn a model of human reward $H: S \times A \rightarrow \mathbb{R}$

Directly exploit the model

Experience

to determine action

If greedy: $action = argmax_a \hat{H}(s, a)$

ICDL 2008 and K-CAP 2009

Teaching an Agent Manually via Evaluative Reinforcement (**TAMER**)

$H: S \times A \to \mathbb{R}$

I.e., TAMER reduces an apparent reinforcement learning problem to a supervised learning problem by setting $\gamma=0$.

Teaching an Agent Manually via Evaluative Reinforcement (**TAMER**)

TAMER in action: Tetris

Handling reward delay

TAMER success on other domains

Environments courtesy of RL-Library and RL-Glue (adapted)

Combination Techniques

- 1. $R'(s,a) = R(s,a) + (\beta * \hat{H}(s,a)).$
- 2. $\overrightarrow{f'} = \overrightarrow{f}.append(\widehat{H}(s,a)).$
- 3. Initially train Q(s, a) to approximate $(\beta * \hat{H}(s, a))$.

4.
$$Q'(s,a) = Q(s,a) + (\beta * \hat{H}(s,a)).$$

- 5. $A' = A \cup argmax_a[\hat{H}(s,a)].$
- 6. $Q'(s,a) = Q(s,a) + (\beta * \hat{H}(s,a))$ only during action selection.
- 7. $P(a = argmax_a[\hat{H}(s, a)]) = min(\beta, 1)$. Otherwise use base RL agent's action selection mechanism.
- 8. $R'(s_t, a) = R(s, a) + (\beta * (\phi(s_t) \phi(s_{t-1})), where$ $\phi(s) = max_a H(s, a).$

Combination Techniques

- 1. $R'(s,a) = R(s,a) + (\beta * \hat{H}(s,a)).$
- 2. $\overrightarrow{f'} = \overrightarrow{f}.append(\widehat{H}(s,a)).$
- 3. Initially train Q(s, a) to approximate $(\beta * \hat{H}(s, a))$.
- 4. action*biasing5. $A' = A \cup argmax_a[\hat{H}(s, a)].$
- 6. $Q'(s,a) = Q(s,a) + (\beta * \hat{H}(s,a))$ only during action selection.
- 7. $P(a = argmax_a[\hat{H}(s, a)]) = min(\beta, 1)$. Otherwise use base RL agent's action selection mechanism.
- 8. $R'(s_t, a) = R(s, a) + (\beta * (\phi(s_t) \phi(s_{t-1})), where \phi(s) = max_a H(s, a).$

Combination Techniques

- 1. $R'(s,a) = R(s,a) + (\beta * \hat{H}(s,a)).$
- 2. $\overrightarrow{f'} = \overrightarrow{f}$.append $(\widehat{H}(s, a))$.
- 3. Initially train Q(s, a) to approximate $(\beta * \hat{H}(s, a))$.

- 6. $Q'(s,a) = Q(s,a) + (\beta * H(s,a))$ only during action selection.
- 7. $P(a = argmax_a[\hat{H}(s, a)]) = min(\beta, 1)$. Otherwise use base RL agent's action selection mechanism.
- 8. $R'(s_t, a) = R(s, a) + (\beta * (\phi(s_t) \phi(s_{t-1})), where$ $\phi(s) = max_a H(s, a).$

Domains:

Defining success

Outperforming:

On each tested \hat{H}

On each tested \hat{H}

Complete successes

action biasing

 $Q'(s,a) = Q(s,a) + (\beta * \hat{H}(s,a))$ only during action selection.

and

control sharing

 $P(a = argmax_a[\hat{H}(s, a)]) = min(\beta, 1)$. Otherwise use base RL agent's action selection mechanism.

Outline

0 Background and TAMER+RL problem
 1 Sequential TAMER+RL
 2 Simultaneous TAMER+RL

Number of trials or attempts at learning

Determining when and where human influences

action biasing

 $Q'(s,a) = Q(s,a) + (\beta * \hat{H}(s,a))$ only during action selection.

control sharing

 $P(a = argmax_a[\hat{H}(s, a)]) = min(\beta, 1)$. Otherwise use base RL agent's action selection mechanism.

Sequential – reduce influence of by annealing β as learning progresses

Simultaneous – influence of (as regulated by β) *should*

- 1. increase after training in nearby state-action space, and
- 2. decrease in the absence of training.

Determining when and where human influences

 \hat{H} Eligibility Module – qualitative characteristics

- 1.Scales up influence in areas of recent training
- 2.Slowly reduces influence in the absence of training

$$\beta := c \overrightarrow{e} \cdot (\overrightarrow{f_n} / \parallel \overrightarrow{f_n} \parallel_1)$$

Experiments

Mountain Car and Balancing Cart-Pole

Experiments

Early-run simultaneous TAMER+RL on Cart Pole

Related work on learning from MDP reward and human input

- alternating stages of autonomous action and human critique (Judah et. al, 2010)
- learning from demonstration (Smart and Kaelbling, 2000; Taylor et al., 2011)
- learning options from demonstration (Subramanian et al., 2011)
- feature selection from demonstration (Cobo et al. 2011, 2012)

TAMER+RL Conclusions

- Human reward can be combined with MDP reward to improve upon learning from either alone.
- Manipulating action selection highest, most consistent gains and robust to changes in weights
 Mixing human and MDP reward in a single value function sometimes helps, brittle to weight values

Can learn simultaneously through an adaptation of eligibility traces