Outline

- A. Introduction
- B. Single Agent Learning
- C. Game Theory
- D. Multiagent Learning
- E. Future Issues and Open Problems

Overview of Game Theory

- Models of Interaction
 - Normal-Form Games
 - Repeated Games
 - Stochastic Games
- Solution Concepts

Normal-Form Games

A normal-form game is a tuple $(n, A_{1...n}, R_{1...n})$,

- n is the number of players,
- A_i is the set of actions available to player i
 - \mathcal{A} is the joint action space $\mathcal{A}_1 \times \ldots \times \mathcal{A}_n$,
- R_i is player i's payoff function $\mathcal{A} \to \Re$.

$$R_2 = / \begin{array}{|c|c|} \hline a_2 \\ \hline a_1 \\ \hline & \vdots \\ \\ & \vdots \\ \hline &$$

Example — Rock-Paper-Scissors

- Two players. Each simultaneously picks an action: *Rock, Paper,* or *Scissors*.
- The rewards:

The matrices:

More Examples

Matching Pennies

$$R_1 = egin{array}{cccc} \mathsf{H} & \mathsf{T} & & \mathsf{H} & \mathsf{T} \\ \mathsf{R}_1 = & \mathsf{T} & \left(egin{array}{cccc} 1 & -1 \\ -1 & 1 \end{array}
ight) & R_2 = egin{array}{cccc} \mathsf{H} & \left(egin{array}{cccc} -1 & 1 \\ 1 & -1 \end{array}
ight) \end{array}$$

Coordination Game

$$R_1 = \begin{array}{ccc} & \mathsf{A} & \mathsf{B} & & \mathsf{A} & \mathsf{B} \\ \mathsf{B} & \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} & R_2 = \begin{array}{ccc} \mathsf{A} & \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \end{array}$$

Bach or Stravinsky

$$R_1 = egin{array}{cccc} & {\sf B} & {\sf S} & & & {\sf B} & {\sf S} \\ {\sf S} & \left(egin{array}{cccc} 2 & 0 \\ 0 & 1 \end{array}
ight) & R_2 = egin{array}{cccc} {\sf B} & \left(egin{array}{cccc} 1 & 0 \\ 0 & 2 \end{array}
ight) \end{array}$$

More Examples

Prisoner's Dilemma

$$R_1 = \begin{array}{ccc} & C & D & & C & D \\ C & \begin{pmatrix} 3 & 0 \\ 4 & 1 \end{pmatrix} & R_2 = \begin{array}{ccc} C & \begin{pmatrix} 3 & 4 \\ D & \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix}$$

Three-Player Matching Pennies

Three-Player Matching Pennies

 Three players. Each simultaneously picks an action: Heads or Tails.

The rewards:

Player One Player Three

wins by matching Player Two wins by matching wins by *not* matching

Player Two, Player Three, Player One.

Three-Player Matching Pennies

• The matrices:

$$R_{1}(\langle\cdot,\cdot,H\rangle) = \begin{array}{cccc} & \mathsf{H} & \mathsf{T} & & \mathsf{H} & \mathsf{T} \\ & \mathsf{H} & \left(\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}\right) & R_{1}(\langle\cdot,\cdot,T\rangle) & = \begin{array}{cccc} & \mathsf{H} & \left(\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}\right) \\ R_{2}(\langle\cdot,\cdot,H\rangle) & = \begin{array}{cccc} & \mathsf{H} & \left(\begin{array}{ccc} 1 & 0 \\ 1 & 0 \end{array}\right) & R_{2}(\langle\cdot,\cdot,T\rangle) & = \begin{array}{cccc} & \mathsf{H} & \left(\begin{array}{ccc} 0 & 1 \\ 0 & 1 \end{array}\right) \\ R_{3}(\langle\cdot,\cdot,H\rangle) & = \begin{array}{cccc} & \mathsf{H} & \left(\begin{array}{cccc} 0 & 0 \\ 1 & 1 \end{array}\right) & R_{3}(\langle\cdot,\cdot,T\rangle) & = \begin{array}{cccc} & \mathsf{H} & \left(\begin{array}{cccc} 1 & 1 \\ 0 & 0 \end{array}\right) \end{array}$$

Strategies

- What can players do?
 - Pure strategies (a_i) : select an action.
 - Mixed strategies (σ_i): select an action according to some probability distribution.

Strategies

- Notation.
 - σ is a joint strategy for all players.

$$R_i(\sigma) = \sum_{a \in \mathcal{A}} \sigma(a) R_i(a)$$

- σ_{-i} is a joint strategy for all players except i.
- $\langle \sigma_i, \sigma_{-i} \rangle$ is the joint strategy where i uses strategy σ_i and everyone else σ_{-i} .

Types of Games

Zero-Sum Games (a.k.a. constant-sum games)

$$R_1 + R_2 = 0$$

Examples: Rock-paper-scissors, matching pennies.

Team Games

$$\forall i, j \qquad R_i = R_j$$

Examples: Coordination game.

General-Sum Games (a.k.a. all games)
 Examples: Bach or Stravinsky, three-player matching pennies, prisoner's dilemma

Repeated Games

- You can't learn if you only play a game once.
- Repeatedly playing a game raises new questions.
 - How many times? Is this common knowledge?

Finite Horizon

Infinite Horizon

Trading off present and future reward?

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} r_t$$

$$\sum_{t=1}^{\infty} \gamma^t r_t$$

Average Reward Discounted Reward

Repeated Games — Strategies

- What can players do?
 - Strategies can depend on the history of play.

$$\sigma_i:\mathcal{H} o PD(\mathcal{A}_i)$$
 where $\mathcal{H}=igcup_{n=0}^\infty\mathcal{A}^n$

Markov strategies a.k.a. stationary strategies

$$\forall a^{1...n} \in \mathcal{A} \qquad \sigma_i(a^1, \dots, a^n) = \sigma(a^n)$$

k-Markov strategies

$$\forall a_{1...n} \in \mathcal{A}$$
 $\sigma_i(a_1, \ldots, a_n) = \sigma(a_{n-k}, \ldots, a_n)$

Repeated Games — Examples

Iterated Prisoner's Dilemma

$$R_1 = \begin{array}{ccc} & C & D & & C & D \\ C & \begin{pmatrix} 3 & 0 \\ 4 & 1 \end{pmatrix} & R_2 = \begin{array}{ccc} C & \begin{pmatrix} 3 & 4 \\ D & \end{pmatrix} \end{pmatrix}$$

- The single most examined repeated game!
- Repeated play can justify behavior that is not rational in the one-shot game.
- Tit-for-Tat (TFT)
 - * Play opponent's last action (C on round 1).
 - * A 1-Markov strategy.

Stochastic Games

Stochastic Games — Definition

A stochastic game is a tuple $(n, \mathcal{S}, \mathcal{A}_{1...n}, T, R_{1...n})$,

- n is the number of agents,
- S is the set of states,
- ullet \mathcal{A}_i is the set of actions available to agent i,
 - \mathcal{A} is the joint action space $\mathcal{A}_1 \times \ldots \times \mathcal{A}_n$,
- ullet T is the transition function $\mathcal{S} imes \mathcal{A} imes \mathcal{S} o [0,1]$,
- R_i is the reward function for the *i*th agent $S \times A \rightarrow \Re$.

Stochastic Games — Policies

- What can players do?
 - Policies depend on history and the current state.

$$\pi_i:\mathcal{H} imes\mathcal{S} o PD(\mathcal{A}_i)$$
 where $\mathcal{H}=\bigcup_{n=0}^\infty(\mathcal{S} imes\mathcal{A})^n$

Markov polices a.k.a. stationary policies

$$\forall h, h' \in \mathcal{H} \ \forall s \in \mathcal{S} \qquad \pi_i(h, s) = \pi(h', s)$$

 Focus on learning Markov policies, but the learning itself is a non-Markovian policy.

Example — Soccer

(Littman, 1994)

- Players: Two.
- States: Player positions and ball possession (780).
- Actions: N, S, E, W, Hold (5).
- Transitions:
 - Simultaneous action selection, random execution.
 - Collision could change ball possession.
- Rewards: Ball enters a goal.

Example — Goofspiel

- Players hands and the deck have cards $1 \dots n$.
- Card from the deck is bid on secretly.
- Highest card played gets points equal to the card from the deck.
- Both players discard the cards bid.
- ullet Repeat for all n deck cards.

Example — Goofspiel

- Players hands and the deck have cards $1 \dots n$.
- Card from the deck is bid on secretly.
- Highest card played gets points equal to the card from the deck.
- Both players discard the cards bid.
- ullet Repeat for all n deck cards.

n	S	$ S \times A $	Sizeof(π or Q)	V(det)	V(random)
4	692	15150	\sim 59KB	-2	-2.5
8	3×10^{6}	1×10^7	\sim 47MB	-20	-10.5
13	1×10^{11}	7×10^{11}	\sim 2.5TB	-65	-28

Stochastic Games — Facts

- If n = 1, it is an MDP.
- If |S| = 1, it is a repeated game.
- If the other players play a stationary policy, it is an MDP to the remaining player.

$$\hat{T}(s, a_i, s') = \sum_{a_{-i} \in \mathcal{A}_{-i}} \pi_{-i}(s, a) T(s, \langle a_i, a_{-i} \rangle, s')$$

- The interesting case, then, is when the other agents are not stationary, i.e., are learning.

Overview of Game Theory

- Models of Interaction
- Solution Concepts

Normal Form Games

- Dominance
- Minimax
- Pareto Efficiency
- Nash Equilibria
- Correlated Equilibria

Repeated/Stochastic Games

- Nash Equilibria
- Universally Consistent

Dominance

 An action is strictly dominated if another action is always better, i.e,

$$\exists a_i' \in \mathcal{A}_i \ \forall a_{-i} \in \mathcal{A}_{-i} \qquad R_i(\langle a_i', a_{-i} \rangle) > R_i(\langle a_i, a_{-i} \rangle).$$

Consider prisoner's dilemma.

$$R_1 = \begin{array}{ccc} & \mathsf{C} & \mathsf{D} & & \mathsf{C} & \mathsf{D} \\ \mathsf{D} & \begin{pmatrix} 3 & 0 \\ 4 & 1 \end{pmatrix} & R_2 = \begin{array}{ccc} \mathsf{C} & \begin{pmatrix} 3 & 4 \\ \mathsf{D} & \begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix} \end{array}$$

- For both players, D dominates C.

Iterated Dominance

Actions may be dominated by mixed strategies.

$$R_1 = egin{array}{cccc} \mathsf{D} & \mathsf{E} & & \mathsf{D} & \mathsf{E} \\ \mathsf{A} & \mathsf{A} & \left(egin{array}{cccc} 1 & 1 & 1 & & & \mathsf{A} & \left(egin{array}{cccc} 4 & 0 & & & \mathsf{A} \\ \mathsf{C} & \left(egin{array}{cccc} 4 & 0 & & & \mathsf{A} \\ \mathsf{D} & \mathsf{C} & \mathsf{C} & \mathsf{C} & \mathsf{C} & \mathsf{C} \end{array}
ight)$$

If strictly dominated actions should not be played...

$$R_{1} = \begin{array}{c|ccc} & D & E & & D & E \\ \hline A & \begin{pmatrix} 1 & 1 \\ 4 & 0 \\ C & 0 & 4 \end{array} & R_{2} = \begin{array}{c|ccc} & A & \begin{pmatrix} 4 & 0 \\ 1 & 2 \\ C & 0 & 1 \end{array} \\ \hline \end{array}$$

Iterated Dominance

Actions may be dominated by mixed strategies.

$$R_1 = egin{array}{cccc} \mathsf{D} & \mathsf{E} & & \mathsf{D} & \mathsf{E} \\ \mathsf{A} & \mathsf{A} & \left(egin{array}{cccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \mathsf{B} & \mathsf{C} & \left(egin{array}{cccc} 4 & 0 & 1 & 1 & 1 & 1 \\ 4 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 4 & 0 & 1 & 1 & 1 & 1 \\ \end{array}
ight) \qquad \qquad R_2 = egin{array}{cccc} \mathsf{B} & \left(egin{array}{cccc} 4 & 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ \end{array}
ight)$$

If strictly dominated actions should not be played...

Iterated Dominance

Actions may be dominated by mixed strategies.

$$R_1 = egin{array}{cccc} & \mathsf{D} & \mathsf{E} & & & \mathsf{D} & \mathsf{E} \\ \mathsf{A} & \mathsf{A} & \left(egin{array}{cccc} 1 & 1 & 1 & & & \mathsf{A} & \left(egin{array}{cccc} 4 & 0 & & & \mathsf{A} \\ \mathsf{A} & 0 & & & & \mathsf{C} & \left(egin{array}{cccc} 1 & 2 & & & \mathsf{A} \\ \mathsf{C} & 0 & 4 & & & & \mathsf{C} & \end{array}
ight)$$

If strictly dominated actions should not be played...

$$R_1 = \begin{array}{c|c} & D & E & D & E \\ \hline A & 1 & 1 \\ \hline C & 0 & 4 \end{array}$$

$$R_2 = \begin{array}{c|c} & A & 1 \\ \hline C & 0 & 1 \end{array}$$

This game is said to be dominance solvable.

Minimax

Consider matching pennies.

$$R_1 = egin{array}{cccc} \mathsf{H} & \mathsf{T} & & \mathsf{H} & \mathsf{T} \\ \mathsf{T} & \left(egin{array}{cccc} 1 & -1 \\ -1 & 1 \end{array}
ight) & R_2 = egin{array}{cccc} \mathsf{H} & \left(egin{array}{cccc} -1 & 1 \\ 1 & -1 \end{array}
ight) \end{array}$$

- Q: What do we do when the world is out to get us?
 A: Make sure it can't.
- Play strategy with the best worst-case outcome.

$$\underset{\sigma_i \in \Delta(\mathcal{A}_i)}{\operatorname{argmax}} \quad \underset{a_{-i} \in \mathcal{A}_{-i}}{\min} \quad R_i(\langle \sigma_i, \sigma_{-i} \rangle)$$

Minimax optimal strategy.

Minimax

Back to matching pennies.

$$R_1 = egin{array}{ccc} \mathsf{H} & \mathsf{T} & & & & \\ \mathsf{R}_1 = egin{array}{ccc} \mathsf{H} & \left(egin{array}{ccc} 1 & -1 & & \\ -1 & 1 & & \end{array}
ight) & \left(egin{array}{ccc} 1/2 & & \\ 1/2 & & \end{array}
ight) = \sigma_1^* & & & \\ \end{array}$$

Consider Bach or Stravinsky.

$$R_1 = \begin{array}{ccc} & \mathsf{B} & \mathsf{S} \\ \mathsf{S} & \left(\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right) & \left(\begin{array}{c} 1/3 \\ 2/3 \end{array} \right) = \sigma_1^*$$

- Minimax optimal guarantees the saftey value.
- Minimax optimal never plays dominated strategies.

Minimax — Linear Programming

Minimax optimal strategies via linear programming.

$$\underset{\sigma_{i} \in \Delta(\mathcal{A}_{i})}{\operatorname{argmax}} \quad \underset{a_{-i} \in \mathcal{A}_{-i}}{\min} \quad R_{i}(\langle \sigma_{i}, \sigma_{-i} \rangle)$$

Pareto Efficiency

 A joint strategy is Pareto efficient if no joint strategy is better for all players, i.e.,

$$\forall a' \in \mathcal{A} \ \exists i \in 1, \dots, n \qquad R_i(a) \geq R_i(a')$$

• In zero-sum games, all strategies are Pareto efficient.

Pareto Efficiency

Consider prisoner's dilemma.

$$R_1 = \begin{array}{ccc} & C & D & & C & D \\ C & \begin{pmatrix} 3 & 0 \\ 4 & 1 \end{pmatrix} & R_2 = \begin{array}{ccc} C & \begin{pmatrix} 3 & 4 \\ D & \begin{pmatrix} 1 & 1 \end{pmatrix} \end{pmatrix}$$

- $\langle D, D \rangle$ is not Pareto efficient.
- Consider Bach or Stravinsky.

$$R_1 = \begin{array}{ccc} & \mathsf{B} & \mathsf{S} & & & \mathsf{B} & \mathsf{S} \\ \mathsf{S} & \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} & & R_2 = \begin{array}{ccc} \mathsf{B} & \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \end{array}$$

- $\langle B, B \rangle$ and $\langle S, S \rangle$ are Pareto efficient.

Nash Equilibria

- What action should we play if there are no dominated actions?
- Optimal action depends on actions of other players.
- A best response set is the set of all strategies that are optimal given the strategies of the other players.

$$BR_i(\sigma_{-i}) = \{ \sigma_i \mid \forall \sigma_i' \quad R_i(\langle \sigma_i, \sigma_{-i} \rangle) \ge R_i(\langle \sigma_i', \sigma_{-i} \rangle) \}$$

 A Nash equilibrium is a joint strategy, where all players are playing best responses to each other.

$$\forall i \in \{1 \dots n\}$$
 $\sigma_i \in \mathrm{BR}_i(\sigma_{-i})$

Nash Equilibria

 A Nash equilibrium is a joint strategy, where all players are playing best responses to each other.

$$\forall i \in \{1 \dots n\}$$
 $\sigma_i \in \mathrm{BR}_i(\sigma_{-i})$

- Since each player is playing a best response, no player can gain by unilaterally deviating.
- Dominance solvable games have obvious equilibria.
 - Strictly dominated actions are never best responses.
 - Prisoner's dilemma has a single Nash equilibrium.

Examples of Nash Equilibria

Consider the coordination game.

$$R_1 = \begin{array}{ccc} & \mathsf{A} & \mathsf{B} & & \mathsf{A} & \mathsf{B} \\ \mathsf{B} & \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} & R_2 = \begin{array}{ccc} \mathsf{A} & \begin{pmatrix} 2 & 0 \\ \mathsf{B} & \begin{pmatrix} 0 & 1 \end{pmatrix} \end{pmatrix}$$

Examples of Nash Equilibria

Consider the coordination game.

$$R_1 = \begin{array}{ccc} & \mathsf{A} & \mathsf{B} & & \mathsf{A} & \mathsf{B} \\ \mathsf{B} & \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} & R_2 = \begin{array}{ccc} \mathsf{A} & \begin{pmatrix} 2 & 0 \\ \mathsf{B} & \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \end{array}$$

Examples of Nash Equilibria

Consider the coordination game.

$$R_1 = \begin{array}{ccc} \mathsf{A} & \mathsf{B} & & \mathsf{A} & \mathsf{B} \\ \mathsf{B} & \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} & R_2 = \begin{array}{ccc} \mathsf{A} & \begin{pmatrix} 2 & 0 \\ \mathsf{B} & \begin{pmatrix} 0 & 1 \end{pmatrix} \end{pmatrix}$$

Consider Bach or Stravinsky.

Examples of Nash Equilibria

Consider the coordination game.

$$R_1 = \begin{array}{ccc} \mathsf{A} & \mathsf{B} & & \mathsf{A} & \mathsf{B} \\ \mathsf{B} & \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} & R_2 = \begin{array}{ccc} \mathsf{A} & \begin{pmatrix} 2 & 0 \\ \mathsf{B} & \begin{pmatrix} 0 & 1 \end{pmatrix} \end{pmatrix}$$

Consider Bach or Stravinsky.

$$R_1 = \begin{array}{ccc} & \mathsf{B} & \mathsf{S} & & \mathsf{B} & \mathsf{S} \\ \mathsf{S} & \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} & R_2 = \begin{array}{ccc} \mathsf{B} & \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \end{array}$$

Examples of Nash Equilibria

Consider matching pennies.

$$R_1 = egin{array}{cccc} \mathsf{H} & \mathsf{T} & & \mathsf{H} & \mathsf{T} \\ \mathsf{T} & \left(egin{array}{cccc} 1 & -1 \\ -1 & 1 \end{array}
ight) & R_2 = egin{array}{cccc} \mathsf{H} & \left(egin{array}{cccc} -1 & 1 \\ 1 & -1 \end{array}
ight) \end{array}$$

No pure strategy Nash equilibria. Mixed strategies?

$$BR_1\bigg(\langle 1/2, 1/2\rangle\bigg) = \{\sigma_1\}$$

Corresponds to the minimax strategy.

Existence of Nash Equilibria

- All finite normal-form games have at least one Nash equilibrium. (Nash, 1950)
- In zero-sum games...
 - Equilibria all have the same value and are interchangeable.

$$\langle \sigma_1, \sigma_2 \rangle, \langle \sigma_1', \sigma_2' \rangle$$
 are Nash $\Rightarrow \langle \sigma_1, \sigma_2' \rangle$ is Nash.

Equilibria correspond to minimax optimal strategies.

Computing Nash Equilibria

- The exact complexity of computing a Nash equilibrium is an open problem. (Papadimitriou, 2001)
- Likely to be NP-hard. (Conitzer & Sandholm, 2003)
- Lemke-Howson Algorithm.
- For two-player games, bilinear programming solution.

Fictitious Play

(Brown, 1949; Robinson 1951)

- An iterative procedure for computing an equilibrium.
 - 1. Initialize $C_i(a_i \in A_i)$, which counts the number of times player i chooses action a_i .
 - 2. Repeat.
 - (a) Choose $a_i \in BR(C_{-i})$.
 - (b) Increment $C_i(a_i)$.

Fictitious Play

(Fudenberg & Levine, 1998)

- If C_i converges, then what it converges to is a Nash equilibrium.
- When does C_i converge?
 - Two-player, two-action games.
 - Dominance solvable games.
 - Zero-sum games.
- This could be turned into a learning rule.

Is there a way to be fair in Bach or Stravinsky?

Is there a way to be fair in Bach or Stravinsky?

$$R_1 = \begin{array}{ccc} & \mathsf{B} & \mathsf{S} & & \mathsf{B} & \mathsf{S} \\ \mathsf{S} & \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} & R_2 = \begin{array}{ccc} \mathsf{B} & \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \end{pmatrix}$$

- Suppose we wanted to both go to Bach or both go to Stravinsky with equal probability?
- We want to correlate our action selection.

- Assume a shared randmoizer (e.g., a coin flip) exists.
- Define a new concept of equilibrium.
 - Let σ be a probability distribution over *joint actions*.
 - Each player observes their own action in a joint action sampled from σ .
 - σ is a correlated equilibrium if no player can gain by deviating from their prescribed action.

$$\forall i \quad a_i \in \mathrm{BR}_i(\sigma_{-i}|\sigma, a_i)$$

Back to Bach or Stravinsky.

$$R_1 = \begin{array}{ccc} & \mathsf{B} & \mathsf{S} & & & \mathsf{B} & \mathsf{S} \\ \mathsf{S} & \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} & & R_2 = \begin{array}{ccc} \mathsf{B} & \begin{pmatrix} 1 & 0 \\ \mathsf{S} & \begin{pmatrix} 0 & 2 \end{pmatrix} \end{pmatrix}$$

Back to Bach or Stravinsky.

$$R_{1} = \begin{array}{c} \mathsf{B} & \mathsf{S} \\ \mathsf{S} & \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \qquad R_{2} = \begin{array}{c} \mathsf{B} & \mathsf{S} \\ \mathsf{S} & \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \end{pmatrix}$$

$$\sigma = \begin{array}{c} \mathsf{B} & \mathsf{S} \\ \mathsf{S} & \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} \end{pmatrix}$$

- All Nash equilibria are correlated equilibria.
- All mixtures of Nash are correlated equilibria.

Overview of Game Theory

- Models of Interaction
- Solution Concepts

Normal Form Games

- Dominance
- Minimax
- Pareto Efficiency
- Nash Equilibria
- Correlated Equilibria

Repeated/Stochastic Games

- Nash Equilibria
- Universally Consistent

- Obviously, Markov strategy equilibria exist.
- Consider iterated prisoner's dilemma and TFT.

$$R_1 = \begin{array}{ccc} & C & D & & C & D \\ C & \begin{pmatrix} 3 & 0 \\ 4 & 1 \end{pmatrix} & R_2 = \begin{array}{ccc} C & \begin{pmatrix} 3 & 4 \\ D & \begin{pmatrix} 1 & 1 \end{pmatrix} \end{pmatrix}$$

- With average reward, what's a best response?
 - * Always D has a value of 1.
 - * D then C has a value of 2.5
 - * Always C and TFT have a value of 3.
- Hence, both players following TFT is Nash.

- The TFT equilibria is strictly preferred to all Markov strategy equilibria.
- The TFT strategy plays a dominated action.
- TFT uses a threat to enforce compliance.
- TFT is not a special case.

Folk Theorem. For any repeated game with average reward, every *feasible* and *enforceable* vector of payoffs for the players can be achieved by some Nash equilibrium strategy. (Osborne & Rubinstein, 1994)

- A payoff vector is feasible if it is a linear combination of individual action payoffs.
- A payoff vector is enforceable if all players get at least their minimax value.

Folk Theorem. For any repeated game with average reward, every *feasible* and *enforceable* vector of payoffs for the players can be achieved by some Nash equilibrium strategy. (Osborne & Rubinstein, 1994)

- Players' follow a deterministic sequence of play that achieves the payoff vector.
- Any deviation is punished.
- The threat keeps players from deviating as in TFT.

- Polynomial time algorithm for finding a Nash equilibrium in a repeated game.
 - Find a feasible and enforceable payoff vector.
 - Construct a strategy that punishes deviance.

- Polynomial time algorithm for finding a Nash equilibrium in a repeated game.
 - Find a feasible and enforceable payoff vector.
 - Construct a strategy that punishes deviance.

- Polynomial time algorithm for finding a Nash equilibrium in a repeated game.
 - Find a feasible and enforceable payoff vector.
 - Construct a strategy that punishes deviance.

- Polynomial time algorithm for finding a Nash equilibrium in a repeated game.
 - Find a feasible and enforceable payoff vector.
 - Construct a strategy that punishes deviance.

Universally Consistent

- A.k.a. Hannan consistent, regret minimizing.
- For a history $h=a^1,a^2,\ldots,a^n\in\mathcal{A}$, define regret for player i,

$$\mathsf{Regret}_i(h) = \left(\max_{a_i \in \mathcal{A}_i} \sum_{t=1}^n R(\langle a_i, a_{-i}^t \rangle) \right) - \sum_{t=1}^n R_i(a^t)$$

i.e., the difference between the reward that could have been received by a stationary strategy and the actual reward received.

Universally Consistent

• A strategy σ_i is universally consistent if for any $\epsilon > 0$ there exists a T such that for all σ_{-i} and t > T,

$$\Pr\left[\frac{\mathsf{Regret}_i\left(a^1,\ldots,a^t\right)}{t} > \epsilon \quad \middle| \ \left\langle \sigma_i,\sigma_{-i}\right\rangle\right] < \epsilon$$

i.e., with high probability the average regret is low for all strategies of the other players.

 If regret is zero, then must be getting at least the minimax value.

Nash Equilibria in Stochastic Games

- Consider Markov policies.
- A best response set is the set of all Markov policies that are optimal given the other players' policies.

$$BR_{i}(\pi_{-i}) = \left\{ \begin{array}{ccc} \pi_{i} \mid & \forall \pi'_{i} \forall s \in \mathcal{S} \\ & V_{i}^{\langle \pi_{i}, \pi_{-i} \rangle}(s) \geq V_{i}^{\langle \pi'_{i}, \pi_{-i} \rangle}(s) \end{array} \right\}$$

 A Nash equilibrium is a joint policy, where all players are playing best responses to each other.

$$\forall i \in \{1 \dots n\}$$
 $\pi_i \in BR_i(\pi_{-i})$

Nash Equilibria in Stochastic Games

 All discounted reward and zero-sum average reward stochastic games have at least one Nash equilibrium. (Shapley, 1953; Fink, 1964)

- Stochastic games are the general model.
- Nash equilibria in stochastic games has certainly received the most attention.