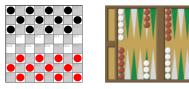
Automatic Heuristic Construction in a Complete General Game Player

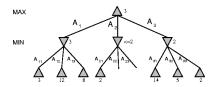
Gregory Kuhlmann Kurt Dresner Peter Stone

Learning Agents Research Group Department of Computer Sciences The University of Texas at Austin

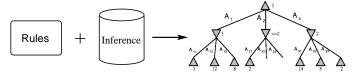

AAAI 2006

G. Kuhlmann, K. Dresner, P. Stone – UT Austin Automatic Heuristic Construction in a Complete GGP

Computer Game Playing

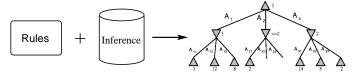

- One of Al's biggest success stories
 - checkers, chess, scrabble, othello, connect-4

Computer Game Playing


- One of AI's biggest success stories
 - checkers, chess, scrabble, othello, connect-4
- Search is universal in game playing

- Bound search for large state spaces
 - Board evaluation function (heuristic)
- Game analysis
 - Traditionally performed by human designers
 - Specific to a single game

General Game Playing

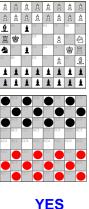

- Single system plays many games in a class
- Analysis performed by system itself
- Player inputs game rules for unknown game
 - · Game description allows simulation
 - Expand game tree

- If not exhaustively searchable, what to do?
 - Look for hints in game description

General Game Playing

- Single system plays many games in a class
- Analysis performed by system itself
- Player inputs game rules for unknown game
 - · Game description allows simulation
 - Expand game tree

- If not exhaustively searchable, what to do?
 - Look for hints in game description


AAAI GGP Competition

- Game Players run as servers
- Game Manager sends rules to players
 - Game Description in GDL
 - Start clock
 - Time to analyze description (1–40 minutes)
 - · Play clock:
 - Time to make moves (10–120 seconds)

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Deterministic, Perfect Information Games

< <p>—

500

∍

YES

Game Description Language

- First order logic (KIF)
- State: database of provable facts
- Constructs
 - init: initial state
 - legal: legal moves
 - next: state transitions
 - terminal: termination conditions
 - goal: value of terminal states

Game Description Language

```
(role white) (role black)
(init (cell a 1 b)) (init (cell a 2 b))
(init (cell a 1 b)) (init (cell a 2 bk))
(init (cell a 1 wr)) (init (cell a 2 b))
(init (cell a 1 b)) (init (cell a 2 b))
(init (control white)) (init (step 1))
(<= (legal white (move wk ?u ?v ?x ?y))</pre>
    (true (control white))
    (true (cell ?u ?v wk))
    (kingmove ?u ?v ?x ?y)
    (true (cell ?x ?y b)))
(<= (next (step ?y))</pre>
    (true (step ?x))
    (succ ?x ?y))
(succ 1 2) (succ 2 3) (succ 3 4) (succ 4 5)
(<= (goal white 100)</pre>
    checkmate)
(<= terminal
    (true (step 10)))
```

- Simulate with theorem prover (Prolog)
- How can we do better than just legal play?

Game Description Language

```
(role white) (role black)
(init (cell a 1 b)) (init (cell a 2 b))
(init (cell a 1 b)) (init (cell a 2 bk))
(init (cell a 1 wr)) (init (cell a 2 b))
(init (cell a 1 b)) (init (cell a 2 b))
(init (control white)) (init (step 1))
(<= (legal white (move wk ?u ?v ?x ?y))</pre>
    (true (control white))
    (true (cell ?u ?v wk))
    (kingmove ?u ?v ?x ?y)
    (true (cell ?x ?y b)))
(<= (next (step ?y))</pre>
    (true (step ?x))
    (succ ?x ?y))
(succ 1 2) (succ 2 3) (succ 3 4) (succ 4 5)
(<= (goal white 100)</pre>
    checkmate)
(<= terminal
    (true (step 10)))
```

- Simulate with theorem prover (Prolog)
- How can we do better than just legal play?

Identify structures from common game elements

Successor Relations

(succ	1	2)
(succ	2	3)
(succ	3	4)
(succ	4	5)

(angel	paper table)
(angel	table bottom)
(angel	<pre>bottom mellow)</pre>
(angel	mellow yard)

Sac

Tokens will be scrambled. Based on structure alone.

Bridge between logical and numerical representations

Find rules matching templates

Step Counters

```
(<= (next (step ?x)) (<= (next (foo ?u))</pre>
    (true (step ?y))
    (succ ?y ?x))
```

```
(true (foo ?v))
(bar ?v ?u))
```

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Again no lexical clues used.

- Bounds tree depth
- Remove for longer internal games
- Remove from Transposition Table

Board Game Structures

Many games have a board of some type

State							
(cell	1	1	bk)	(cell	1	2	b)
(cell	1	3	wk)	(cell	1	4	b)
(cell	2	1	b)	(cell	2	2	b)
(cell	2	3	bk)	(cell	2	4	b)
(cell	3	1	wr)	(cell	3	2	b)
(cell	3	3	b)	(cell	3	4	b)
(cell	4	1	b)	(cell	4	2	b)
(cell	4	3	b)	(cell	4	4	b)

Boards and Pieces

cell:0,1->2	;	[b,	wk,	Wl	ĉ,	bk]
cell:0,2->1	;	[1,	2,	3,	4]
cell:1,2->0	;	[1,	2,	3,	4]

- Start with all ternary functions
- Divide slots into inputs and outputs

Sac

Refine through internal simulation

G. Kuhlmann, K. Dresner, P. Stone – UT Austin Automatic Heuristic Construction in a Complete GGP

Board Game Structures

Many games have a board of some type

State							
(cell	1	1	bk)	(cell	1	2	b)
(cell	1	3	wk)	(cell	1	4	b)
(cell	2	1	b)	(cell	2	2	b)
(cell	2	3	bk)	(cell	2	4	b)
(cell	3	1	wr)	(cell	3	2	b)
(cell	3	3	b)	(cell	3	4	b)
(cell	4	1	b)	(cell	4	2	b)
(cell	4	3	b)	(cell	4	4	b)

Boards and Pieces

cell:0,1->2 ; [b, wk, wr, bk]

- Start with all ternary functions
- Divide slots into inputs and outputs

Sac

Refine through internal simulation

G. Kuhlmann, K. Dresner, P. Stone – UT Austin Automatic Heuristic Construction in a Complete GGP

Board Game Structures

Many games have a board of some type

State							
(cell	1	1	bk)	(cell	1	2	b)
(cell	1	3	wk)	(cell	1	4	b)
(cell	2	1	b)	(cell	2	2	b)
(cell	2	3	bk)	(cell	2	4	b)
(cell	3	1	wr)	(cell	3	2	b)
(cell	3	3	b)	(cell	3	4	b)
(cell	4	1	b)	(cell	4	2	b)
(cell	4	3	b)	(cell	4	4	b)

Boards and Pieces

cell:0,1->2 ; [wk, wr, bk]

- Start with all ternary functions
- Divide slots into inputs and outputs

Sac

Refine through internal simulation

G. Kuhlmann, K. Dresner, P. Stone – UT Austin Automatic Heuristic Construction in a Complete GGP

Identified Structure	Generated Features
Ordered Board w/ Pieces	Each piece's X coordinate Each piece's Y coordinate Manhattan distance between each pair of pieces Sum of pair-wise Manhattan distances
Board w/o Pieces Quantity	Number of markers of each type Amount

- Board inputs ordered by successor relation(s)?
- Board has at least one piece?
- Non-board features also identified

Maximize single feature:

$$H(s) = 1 + R^{-} + (R^{+} - R^{-} - 2) * V(s)$$

Or minimize single feature:

$$H(s) = 1 + R^{-} + (R^{+} - R^{-} - 2) * [1 - V(s)]$$

- Example: Maximize white rook's y-coordinate
- Actual win always better than heuristic value
- Actual loss always worse

During Start Clock:

- Candidate heuristics constructed from GD
- "Best" heuristic is chosen
 - Old approach: parallel search
 - New approach: internal tournament

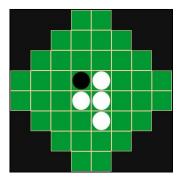
During Play Clock:

- Iterative-deepening Minimax search
 - Minimax search w/ $\alpha\beta$ pruning
 - Transposition table and history heuristic
 - Extensions for > 2 players, simultaneous games

- Goal: Identify impact of game analysis
- Three different games
 - created by competition organizers
- Heuristic chosen manually
 - simulates good method to choose heuristic
 - no experimentation after initial selection
- Opponent: constant heuristic (exhaustive search)

Othello variant

- more corner squares
- opposite goal: finish with fewer markers

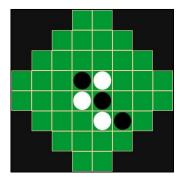

G. Kuhlmann, K. Dresner, P. Stone – UT Austin Automatic Heuristic Construction in a Complete GGP

< <p>—

500

Othello variant

- more corner squares
- opposite goal: finish with fewer markers

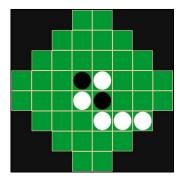


< <p>—

500

Othello variant

- more corner squares
- opposite goal: finish with fewer markers

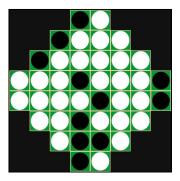

G. Kuhlmann, K. Dresner, P. Stone – UT Austin Automatic Heuristic Construction in a Complete GGP

< <p>—

500

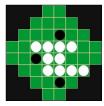
Othello variant

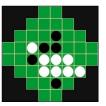
- more corner squares
- opposite goal: finish with fewer markers

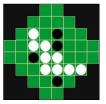


< <p>—

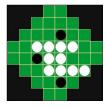
500


Othello variant


- more corner squares
- opposite goal: finish with fewer markers


G. Kuhlmann, K. Dresner, P. Stone – UT Austin Automatic Heuristic Construction in a Complete GGP

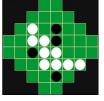
SQC.

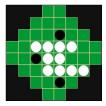

NumMarkers: 10 H(s): 74.25

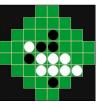
NumMarkers: 8 H(s): 79.20

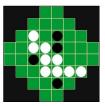
NumMarkers: 8 H(s): 79.20

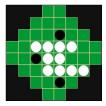
NumMarkers: 9 H(s): 76.73

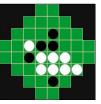



NumMarkers: 8 H(s): 79.20




NumMarkers: 9 H(s): 76.73


NumMarkers: 10 H(s): 74.25

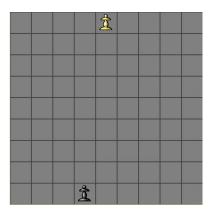

NumMarkers: 8 H(s): 79.20

NumMarkers: 8 H(s): 79.20

NumMarkers: 9 H(s): 76.73

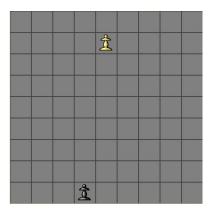
NumMarkers: 10 H(s): 74.25

NumMarkers: 8 H(s): 79.20


NumMarkers: 8 H(s): 79.20

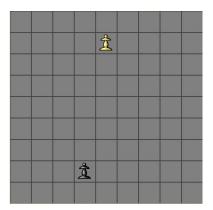
NumMarkers: 9 H(s): 76.73

Chess board with two pawns

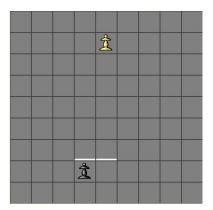

- Actions: move pawn or place wall
- Goal: reach other side first

SQC.

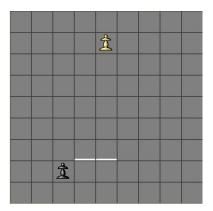
Chess board with two pawns


- Actions: move pawn or place wall
- Goal: reach other side first

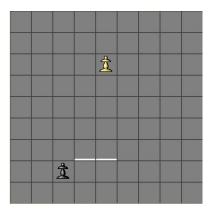
SQC.


Chess board with two pawns

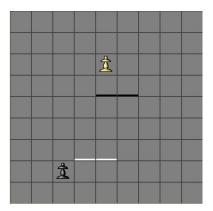
- Actions: move pawn or place wall
- Goal: reach other side first


Chess board with two pawns

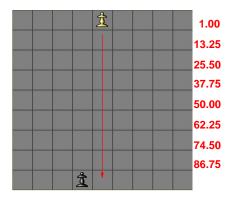
- Actions: move pawn or place wall
- Goal: reach other side first


Chess board with two pawns

- Actions: move pawn or place wall
- Goal: reach other side first


Chess board with two pawns

- Actions: move pawn or place wall
- Goal: reach other side first



Chess board with two pawns

- Actions: move pawn or place wall
- Goal: reach other side first

Heuristic: maximize own pawn's y-coordinate

G. Kuhlmann, K. Dresner, P. Stone – UT Austin Automatic Heuristic Construction in a Complete GGP

• •

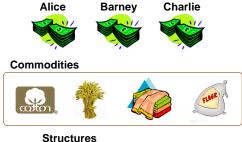
UNS

∍

500

Commodities trading game w/ three simultaneous players

Structures


Heuristic: maximize own money

G. Kuhlmann, K. Dresner, P. Stone – UT Austin Automa

Automatic Heuristic Construction in a Complete GGP

< n

Commodities trading game w/ three simultaneous players

Heuristic: maximize own money

G. Kuhlmann, K. Dresner, P. Stone – UT Austin Automatic Heuristic Construction in a Complete GGP

Results

• Experimental results

Game	Matches	Expected Wins	Empirical Wins	р
Nothello	15	7.5	15	10 ⁻⁵
Hallway	15	3	15	10 ⁻¹¹
Farmers	25	8.3	11	0.234

- Competition Results
 - 2005: competitive but technical difficulties
 - 2006: very competitive (3rd place)
 - after 72 matches, gap with first: \sim 3 games

Results

• Experimental results

Game	Matches	Expected Wins	Empirical Wins	р
Nothello	15	7.5	15	10 ⁻⁵
Hallway	15	3	15	10 ⁻¹¹
Farmers	25	8.3	11	0.234

Competition Results

- 2005: competitive but technical difficulties
- 2006: very competitive (3rd place)
 - after 72 matches, gap with first: \sim 3 games

Conclusion and Future Work

- General Game Playing
 - Automate game analysis
- Automatic Heuristic Construction
 - Structures \rightarrow Features \rightarrow Heuristics
- Method incorporated into complete agent
- Future Work
 - Learn more complex evaluation functions
 - Understand game similarity
 - Transfer knowledge between games

Conclusion and Future Work

- General Game Playing
 - Automate game analysis
- Automatic Heuristic Construction
 - Structures \rightarrow Features \rightarrow Heuristics
- Method incorporated into complete agent
- Future Work
 - Learn more complex evaluation functions
 - Understand game similarity
 - Transfer knowledge between games