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Intelligent decision making is at the heart of AI.

Motivation
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Markov Decision Process

Action at

State st

Reward rt

Markov Property ensures st+1 depends only on st 

Learning an optimal policy π* requires no memory
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Partially Observable MDP 
(POMDP)

Action at

Observation ot

Reward rt

Observations provide noisy or incomplete information 

Memory may help to learn a better policy
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Reinforcement Learning
Reinforcement Learning provides a general 
framework for sequential decision making. 

Objective: Learn a policy that maximizes discounted 
sum of future rewards. 

Deterministic policy π is a mapping from states/
observations to actions. 

For each encountered state/observation, what is the 
best action to perform.
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Q-Value Function
Estimates the expected return from a given state-
action: 

Answers the question: “How good is action a from 
state s.” 

Optimal Q-Value function yields an optimal policy.

Q⇡(s, a) = E
⇥
rt+1 + �rt+2 + �2rt+3 + . . . |s, a

⇤
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Deep Neural Network

Parametric model with stacked 
layers of representation. 

Powerful, general purpose function 
approximator. 

Parameters    optimized via 
backpropagation.

Input

Output

✓
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Atari Environment

Action at

Observation ot

Reward rt

Resolution 160x210x3
18 discrete actions

Reward is change in game score
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Atari: MDP or POMDP?

Depends on the number 
game screens used in the 
state representation. 

Many games PO with a 
single frame. 
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Neural network estimates Q-Values 
Q(s,a) for all 18 actions: 

Learns via temporal difference: 

Accepts the last 4 screens as input.

Deep Q-Network (DQN)

Convolution 1

Convolution 2

Convolution 3

Fully Connected

Fully Connected

Q-Values

Q(s|✓) = (Qs,a1 . . . Qs,an)

yi = rt + �max(Q(st+1|✓))
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yi �Q(st|✓i)
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Flickering Atari
How well does DQN perform on POMDPs? 

Induce partial observability by stochastically 
obscuring the game screen 

Game state must be inferred from past observations

ot =

⇢
st with p =

1
2

< 0, . . . , 0 > otherwise
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DQN Pong

True Game Screen Observed Game Screen
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DQN Flickering Pong

True Game Screen Observed Game Screen
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Uses a Long Short Term Memory 
(LSTM) to selectively remember past 
game screens. 

Architecture identical to DQN except: 
1. Replaces FC layer with LSTM 
2. Single frame as input each 

timestep 

Trained end-to-end using BPTT for 
last 10 timesteps.

Deep Recurrent Q-Network 

Convolution 1

Convolution 2

Convolution 3

LSTM

Fully Connected

Q-Values
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DRQN Flickering Pong

True Game Screen Observed Game Screen
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LSTM infers velocity
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DRQN Frostbite
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Extensions
DRQN has been extended in several ways: 

• Addressable Memory: Control of Memory, Active 
Perception, and Action in Minecraft; Oh et al. in 
ICML ’16 

• Continuous Action Space: Memory Based Control 
with Recurrent Neural Networks; Heess et al., 2016 

[Deep Recurrent Q-Learning for Partially Observable 
MDPs, Hausknecht et al, 2015; ArXiv]
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Half Field Offense
Cooperative multiagent soccer domain built on the 
libraries used by the RoboCup competition 

Objective: Learn a goal scoring policy for the offense 
agents 

Features continuous actions, partial observability, and 
opportunities for multiagent coordination
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Half Field Offense
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State Action Spaces

58 continuous state features encoding 
distances and angles to points of interest 

Parameterized-Continuous Action Space:  
Dash(direction, power)  
Turn(direction) 
Tackle(direction)  
Kick(direction, power) 

Choose one discrete action + parameters 
every timestep
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Exploration is Hard

29



Hausknecht and Stone, UT Austin

Reward Signal

rt = -ᵂd(Agent, Ball) + Ikick + -3ᵂd(Ball, Goal) + 5IGoal

Go to Ball                      Kick to Goal

30

With only goal-scoring reward, agent never learns 
to approach the ball or dribble.



Deep Deterministic 
Policy Gradients 

Model-free Deep Actor Critic 
architecture [Lillicrap ’15] 

Actor learns a policy π, Critic 
learns to estimate Q-values 

Actor outputs all 6 possible 
parameters.  

at = max(4 actions) + associated 
parameter(s)

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

Critic
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Training
Critic trained using temporal 
difference: 

Actor trained via Critic gradients:

State

ᵘθμ

4 Actions 6 Parameters

ᵘθQ

Q-Value

Actor

Critic

auQ
(s
,a
)L = ||Q(st, µ(st)|✓Q)� y||22

y = rt + �(Q(st+1, µ(st+1)|✓Q))

r✓µµ(s) = raQ(s, a|✓Q)r✓µµ(s|✓µ)
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Bounded Action Space
HFO’s continuous parameters are bounded 

Dash(direction, power) 
Turn(direction) 
Tackle(direction) 
Kick(direction, power) 

Direction in [-180,180], Power in [0, 100] 

Exceeding these ranges results in no action 

If DDPG is unaware of the bounds, it will invariably 
exceed them
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We examine 3 approaches for bounding the DDPG’s 
action space: 

1. Squash Gradients 

2. Zero Gradients 

3. Invert Gradients

Bounded DDPG
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Squashing Gradients
1. Use Tanh non-linearity to bound parameter output 

2. Rescale into desired range
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Squashing Gradients
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Each continuous parameter has a range: [pmin, pmax] 

Let p denote current value of parameter, and      the 
suggested gradient. 

Then:

Zeroing Gradients

rp =

(
rp if p

min

< p < p
max

0 otherwise

rp
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Zeroing Gradients
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Inverting Gradients

rp = rp ·
(
(p

max

� p)/(p
max

� p
min

) if rp suggests increasing p

(p� p
min

)/(p
max

� p
min

) otherwise

For each parameter:

Allows parameters to approach the bounds of the ranges 
without exceeding them 

Parameters don’t get “stuck” or saturate
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Inverting Gradients
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Results
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Results
Scoring Avg. Steps
Percent to Goal

DDPG1 1.0 108.0
DDPG2 .99 107.1
DDPG3 .98 104.8
DDPG4 .96 112.3

Helios’ Champion .96 72.0
DDPG5 .94 119.1
DDPG6 .84 113.2
SARSA .81 70.7
DDPG7 .80 118.2
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[Deep Reinforcement Learning in Parameterized Action 
Space, Hausknecht and Stone, in ICLR ‘16]
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Deep Multiagent RL
Can multiple Deep RL agents cooperate to achieve a 
shared goal? 

Examine several baseline architectures: 

Decentralized: Independent agents 

Centralized: Single controller for multiple agents 

Parameter Sharing: Layers shared between agents
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Centralized

Both agents are controlled 
by a single DDPG 

State & Action spaces are 
concatenated 

Learning is more 
challenging for this reason

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Actor

Critic

State

6 Parameters4 Actions

State
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Parameter 
Sharing

Shared weights between layers in 
Actor networks. Separate sharing 
between Critic networks. 

Reduces total number of parameters! 

Encourages both agents to participate 
even though 2v0 is solvable by a 
single agent.

State

4 Actions 6 Parameters

256

ReLU

128

ReLU

Q-Value

256

ReLU

128

ReLU

4 Actions 6 Parameters

256

ReLU

128

ReLU

Q-Value

256

ReLU

128

ReLU

State

1024

ReLU

512

ReLU

1024

ReLU

512

ReLU

Critics

Actors

46



47





49



Hausknecht and Stone, UT Austin

Related Work
• Multiagent Cooperation and Competition with Deep 

Reinforcement Learning; Tampuu et. al, 2015 

• Learning to Communicate to Solve Riddles with 
Deep Distributed Recurrent Q-Networks; Foerster 
et al., 2016 

• Learning to Communicate with Deep Multi-Agent 
Reinforcement Learning; Foerster et al., 2016
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Thanks!

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

CriticConvolution 1

Convolution 2

Convolution 3

LSTM

Fully Connected

Q-Values
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