Adapting Representation to the Problem

‘Typically, representations given and/or chosen manually
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The crucial factor for a successful approximate algorithm is

the choice of the parametric approximation architecture. ...
[Lagoudakis & Parr,03]
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Adapting Representation to the Problem

® Example: using neural networks
® Too simple: suboptimal performance
® Divergence and catastrophic performance }
[Baird 1995] [Boyan & Moore 1995]
{w} Too complex: infeasibly slow learning
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® Example: using neural networks
® Too simple: suboptimal performance
® Divergence and catastrophic performance }
[Baird 1995] [Boyan & Moore 1995]
{w} Too complex: infeasibly slow learning

{ e How do we represent our solution?

‘ Can RL agents automatically learn effective representations?
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NEAT+Q [whiteson & Stone, JMLR 2006]

| Evolve agents that are better able to learn |

@ Evolution chooses representation and initial weights
— NEAT learns NN topologies [Stanley & Miikkulainen, '02]

@ Q-learning learns weights that approximate value function
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NEAT+Q Results

Uniform Moving Average Score Per Episode
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e Neural net function approx. works on mountain car!
e Tested Q-learning with 24 manual configurations
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