
Adapting Representation to the Problem

Typically, representations given and/or chosen manually
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The crucial factor for a successful approximate algorithm is

the choice of the parametric approximation architecture. . . .”

[Lagoudakis & Parr,’03]
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Adapting Representation to the Problem
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Adapting Representation to the Problem

Can RL agents automatically learn effective representations?
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NEAT+Q [Whiteson & Stone, JMLR 2006]

Evolve agents that are better able to learn

Evolution chooses representation and initial weights

− NEAT learns NN topologies [Stanley & Miikkulainen, ’02]

Q-learning learns weights that approximate value function
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NEAT+Q Results

• Neural net function approx. works on mountain car!

• Tested Q-learning with 24 manual configurations
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