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• Autonomous agents
• Multiagent systems
• Machine learning
• Robotics
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Autonomous Intelligent Agents

• They must sense their environment.
• They must decide what action to take (“think”).
• They must act in their environment.

Complete Intelligent Agents

• Interact with other agents (Multiagent systems)
• Improve performance from experience (Learning agents)

Autonomous Bidding, Cognitive Systems,
Traffic management, Robot Soccer
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RoboCup

Goal: By the year 2050, a team of humanoid robots
that can beat the human World Cup champion team.

• An international research initiative

• Drives research in many areas:

− Control algorithms; machine vision, sensing; localization;
− Distributed computing; real-time systems;
− Ad hoc networking; mechanical design;
− Multiagent systems; machine learning; robotics

Several Different Leagues
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Peter Stone



Sony Aibo (ERS-210A, ERS-7)

Peter Stone



Sony Aibo (ERS-210A, ERS-7)

Peter Stone



Creating a team — Subtasks

Peter Stone



Creating a team — Subtasks

• Vision
• Localization
• Walking
• Ball manipulation (kicking)
• Individual decision making
• Communication/coordination

Peter Stone



Creating a team — Subtasks

• Vision
• Localization
• Walking
• Ball manipulation (kicking)
• Individual decision making
• Communication/coordination

Peter Stone



Competitions

• Barely closed the loop by American Open (May, ’03)

Peter Stone



Competitions

• Barely closed the loop by American Open (May, ’03)

• Improved significantly by Int’l RoboCup (July, ’03)

Peter Stone



Competitions

• Barely closed the loop by American Open (May, ’03)

• Improved significantly by Int’l RoboCup (July, ’03)

• Won 3rd place at US Open (2004, 2005)

• Quarterfinalist at RoboCup (2004, 2005)

Peter Stone



Competitions

• Barely closed the loop by American Open (May, ’03)

• Improved significantly by Int’l RoboCup (July, ’03)

• Won 3rd place at US Open (2004, 2005)

• Quarterfinalist at RoboCup (2004, 2005)

• Highlights:
− Many saves: 1; 2; 3; 4;
− Lots of goals: CMU; Penn; Penn; Germany;

− A nice clear
− A counterattack goal

Peter Stone



Post-competition: the research
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Post-competition: the research

• Model-based joint control [Stronger, Stone]

• Machine learning for fast walking [Kohl, Stone]

• Learning to acquire the ball [Fidelman, Stone]

• Learning sensor and action models [Stronger, Stone]

• Color constancy on mobile robots [Sridharan, Stone]

• Robust particle filter localization [Sridharan, Kuhlmann, Stone]

• Autonomous Color Learning [Sridharan, Stone]
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Policy Gradient RL to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

• Start with a parameterized walk

• Learn fastest possible parameters

• No simulator available:

− Learn entirely on robots
− Minimal human intervention

Peter Stone
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• Walks that “come with” Aibo are slow

• RoboCup soccer: 25+ Aibo teams internationally

− Motivates faster walks
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Walking Aibos

• Walks that “come with” Aibo are slow

• RoboCup soccer: 25+ Aibo teams internationally

− Motivates faster walks

Hand-tuned gaits [2003] Learned gaits
German UT Austin Hornby et al. Kim & Uther
Team Villa UNSW [1999] [2003]

230 mm/s 245 254 170 270 (±5)
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A Parameterized Walk
• Developed from scratch as part of UT Austin Villa 2003

• Trot gait with elliptical locus on each leg

Peter Stone



Locus Parameters
z

x

y

• Ellipse length
• Ellipse height
• Position on x axis
• Position on y axis
• Body height
• Timing values

12 continuous parameters
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Locus Parameters
z

x

y

• Ellipse length
• Ellipse height
• Position on x axis
• Position on y axis
• Body height
• Timing values

12 continuous parameters

• Hand tuning by April, ’03: 140 mm/s
• Hand tuning by July, ’03: 245 mm/s

Peter Stone



Experimental Setup
• Policy π = {θ1, . . . , θ12}, V (π) = walk speed when using π
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Experimental Setup
• Policy π = {θ1, . . . , θ12}, V (π) = walk speed when using π

• Training Scenario

− Robots time themselves traversing fixed distance
− Multiple traversals (3) per policy to account for noise
− Multiple robots evaluate policies simultaneously
− Off-board computer collects results, assigns policies

No human intervention except battery changes

Peter Stone
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Experiments
• Started from stable, but fairly slow gait

• Used 3 robots simultaneously

• Each iteration takes 45 traversals, 71
2 minutes
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Experiments
• Started from stable, but fairly slow gait

• Used 3 robots simultaneously

• Each iteration takes 45 traversals, 71
2 minutes

Before learning After learning

• 24 iterations = 1080 field traversals, ≈ 3 hours
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Results
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• Additional iterations didn’t help
• Spikes: evaluation noise? large step size?
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Learned Parameters
Parameter Initial ε Best

Value Value
Front ellipse:

(height) 4.2 0.35 4.081
(x offset) 2.8 0.35 0.574
(y offset) 4.9 0.35 5.152

Rear ellipse:
(height) 5.6 0.35 6.02

(x offset) 0.0 0.35 0.217
(y offset) -2.8 0.35 -2.982

Ellipse length 4.893 0.35 5.285
Ellipse skew multiplier 0.035 0.175 0.049
Front height 7.7 0.35 7.483
Rear height 11.2 0.35 10.843
Time to move

through locus 0.704 0.016 0.679
Time on ground 0.5 0.05 0.430
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Algorithmic Comparison, Robot Port

Before learning After learning
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Summary

• Used policy gradient RL to learn fastest Aibo walk

• All learning done on real robots

• No human itervention (except battery changes)

Peter Stone



Outline

• Machine learning for fast walking [Kohl, Stone]

• Learning to acquire the ball [Fidelman, Stone]

• Learning sensor and action models [Stronger, Stone]

• Color constancy on mobile robots [Sridharan, Stone]

• Autonomous Color Learning [Sridharan, Stone]
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Grasping the Ball

• Three stages: walk to ball; slow down; lower chin

• Head proprioception, IR chest sensor 7→ ball distance

• Movement specified by 4 parameters
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Grasping the Ball

• Three stages: walk to ball; slow down; lower chin

• Head proprioception, IR chest sensor 7→ ball distance

• Movement specified by 4 parameters

Brittle!
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Parameterization
• slowdown dist: when to slow down

• slowdown factor: how much to slow down

• capture angle: when to stop turning

• capture dist: when to put down head

Peter Stone



Learning the Chin Pinch

• Binary, noisy reinforcement signal: multiple trials

• Robot evaluates self: no human intervention

Peter Stone



Results

• Evaluation of policy gradient, hill climbing, amoeba
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What it learned

Policy slowdown slowdown capture capture Success
dist factor angle dist rate

Initial 200mm 0.7 15.0o 110mm 36%
Policy gradient 125mm 1 17.4o 152mm 64%

Amoeba 208mm 1 33.4o 162mm 69%
Hill climbing 240mm 1 35.0o 170mm 66%

Peter Stone



Instance of Layered Learning
• For domains too complex for tractably mapping state

features S 7−→ outputs O

• Hierarchical subtask decomposition given: {L1, L2, . . . , Ln}

• Machine learning: exploit data to train, adapt

• Learning in one layer feeds into next layer

Individual Behaviors

Team Behaviors

Adversarial Behaviors

Environment

High Level Goals

Opportunities
Machine LearningMulti-Agent Behaviors

World State
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Outline

• Machine learning for fast walking [Kohl, Stone]

• Learning to acquire the ball [Fidelman, Stone]

• Learning sensor and action models [Stronger, Stone]

• Color constancy on mobile robots [Sridharan, Stone]

• Autonomous Color Learning [Sridharan, Stone]
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Learned Action/Sensor Models
• Mobile robots rely on models of their actions and sensors

− Typically tuned manually: Time-consuming

• Autonomous Sensor and Actuator Model Induction
(ASAMI)

• ASAMI is autonomous: no external feedback

− Developmental robotics

• Techinique is implemented and tested in:

– One-dimensional scenario: Sony Aibo ERS-7
– Aibo in two-dimensional area
– Second robotic platform: an autonomous car

Peter Stone



Action and Sensor Models
• Mobile robots rely on models of their actions and sensors

Throttle Position
Brake Position
Steering Position

Action

Control Policy

Agent

Observations
Sensations

Action Model

Sensor
Model

World State

Car Position
Car Velocity

Range Finder Readings
Camera Image
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Action and Sensor Models
• Mobile robots rely on models of their actions and sensors
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General Methodology
• Action model, sensor model, world state unknown:

Throttle Position
Brake Position
Steering Position

Action Model

Agent

Car Position
Car Velocity

Range Finder Readings
Camera Image

Model
Sensor

World State

Control Policy

Action

Sensations
Observations
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General Methodology
• Given the robot’s actions and observations:

World State
Estimate

Action
Model
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General Methodology
• Given the robot’s actions and observations:

World State
Estimate

Action
Model

Sensor
Model

Accurate Accurate
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The Task

distance
sensor input

• Sensor model: beacon height in image 7→ distance

− Mapping derived from camera specs not accurate
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The Task

distance
sensor input

• Sensor model: beacon height in image 7→ distance

− Mapping derived from camera specs not accurate

• Action model: parametrized walking, W(x) 7→ velocity

− x ∈ [−300, 300] is attempted velocity
− Not accurate due to friction, joint behavior

Peter Stone



Experimental Setup

• Aibo alternates walking forwards and backwards

– Forwards: random action in [0, 300]
– Backward phase: random action in [−300, 0]
– Switch based on beacon size in image
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Experimental Setup

• Aibo alternates walking forwards and backwards

– Forwards: random action in [0, 300]
– Backward phase: random action in [−300, 0]
– Switch based on beacon size in image

• Aibo keeps self pointed at beacon

Peter Stone



Learning Action and Sensor Models

• Both models provide info about the robot’s location

• Sensor model: observation obsk 7→ location:
xs(tk) = S(obsk)
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Learning Action and Sensor Models

• Both models provide info about the robot’s location

• Sensor model: observation obsk 7→ location:
xs(tk) = S(obsk)

• Action model: action command C(t) 7→ velocity:
xa(t) = x(0) +

∫ t
0
A(C(s)) ds

• Goal: learn arbitrary continuous functions, A and S

− Use polynomial regression as function approximator
− Models learned in arbitrary units

Peter Stone



Learning a Sensor Model
• Assume accurate action model
• Consider ordered pairs (obsk, xa(tk))
• Fit polynomial to data
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Learning a Sensor Model
• Assume accurate action model
• Consider ordered pairs (obsk, xa(tk))
• Fit polynomial to data

Data Points
Sensor Model (S)
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Learning an Action Model

• Assume accurate sensor model
• Plot xs(t) against time
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Learning an Action Model

• Assume accurate sensor model is accurate
• Plot xs(t) against time

t

xs
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Learning an Action Model (cont.)

• Compute action model that minimizes the error
• Problem equivalent to another multivariate regression

t

Data Points

xs

Best Fit, with
Slope = A(C(t))
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Learning Both Simultaneously
• Both models improve via bootstrapping
− Maintain two notions of location, xs(t) and xa(t)
− Each used to fit the other model
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Learning Both Simultaneously
• Both models improve via bootstrapping
− Maintain two notions of location, xs(t) and xa(t)
− Each used to fit the other model

• Use weighted regression
− wi = γn−i, γ < 1
− Can still be computed incrementally

• Ramping up

tS A tA 0 t = 0

t = t

t = 2tstart

start
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Learning Both Simultaneously

• Over 2.5 min., xs(t) and xa(t) come into strong agreement

Time (s)

x(t)
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Experimental Results

• Run ASAMI for pre-set amount of time (2.5 minutes)
• Measure actual models with stopwatch and ruler
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Experimental Results

• Run ASAMI for pre-set amount of time (2.5 minutes)
• Measure actual models with stopwatch and ruler
• Compare measured vs. learned after best scaling

Measured Action Model:
Learned Action Model:

Vel.

Action Command

Learned Sensor Model:
Measured Sensor Model:

Beacon Height

Dist.
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Experimental Results

• Average fitness of model over 15 runs
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Learning in Two Dimensions
• Robot learns while traversing rectangular field

− Combinations of forward, sideways, and turning motion
− Field has four color-coded cylindrical landmarks
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Learning in Two Dimensions
• Robot learns while traversing rectangular field

− Combinations of forward, sideways, and turning motion
− Field has four color-coded cylindrical landmarks

d
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2nd Robotic Platform: Autonomous Car
• Self-driving car provides many challenges for autonomous

model learning

• Actions lead to accelerations, angular velocity:
− Throttle, brake, and steering position

• Sensors provide information about pose and map:
− Three-dimensional LIDAR

• Again learn both models starting without accurate
estimate of either

Peter Stone



3d LIDAR for Autonomous Cars
• The Velodyne LIDAR sensor:

• 64 lasers return distance readings

• Each laser is at a different vertical angle and different
horizontal offset

• Unit spins around vertical axis at 10Hz

Peter Stone



Summary

• ASAMI: Autonomous, no external feedback

• Computationally efficient

• Starts with poor action model, no sensor model

− Learns accurate approximations to both models
− Models are to scale with each other

Peter Stone



Outline

• Machine learning for fast walking [Kohl, Stone]

• Learning to acquire the ball [Fidelman, Stone]

• Learning sensor and action models [Stronger, Stone]

• Color constancy on mobile robots [Sridharan, Stone]

• Autonomous Color Learning [Sridharan, Stone]
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• Visual system’s ability to recognize true color across
variations in environment
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Color Constancy

• Visual system’s ability to recognize true color across
variations in environment

• Challenge: Nonlinear variations in sensor response with
change in illumination

• Mobile robots:

− Computational limitations
− Changing camera positions

Peter Stone



Vision Flowchart
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Segmentation
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Sample Images
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Sample Images
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Our Goal

• Match current performance in changing lighting

• Experiments on ERS-210A robots
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Training/Testing

Off-board training: Recognize 10 different colors

− Color cube: 128 × 128 × 128 pixel values 7→ color label
− Nearest Neighbor/weighted average approach
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Training/Testing

Off-board training: Recognize 10 different colors

− Color cube: 128 × 128 × 128 pixel values 7→ color label
− Nearest Neighbor/weighted average approach

On-board testing:

− Segment images using color map
− Run-length encoding, region growing: detect markers
− Markers used for Localization
− Higher level strategies and action selection

Real-time color constancy without degradation

Peter Stone
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Approach
• Most previous: static cameras, few colors

• Here: discrete 2-illumination case: 1500lux vs. 400lux

• Compare image pixel distributions (in normalized RGB)

• KL-divergence as similarity metric:

− Given image, determine distribution in (r,g) space
− Compare distribution A,B (N=64)

− Small value⇒ similar
− Robust to large peaks in observed color distrubutions

Peter Stone



Training Phase
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Testing Phase
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Results
− Test on find-and-walk-to-ball task
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Results
− Test on find-and-walk-to-ball task

Lighting transition Time(sec)
None 15.2 ± 0.8

Bright/Dark 26.5 ± 1.7
Dark/Bright 20.1 ± 2.7

− Also tested intermediate illuminations; adversarial case
− On ERS-7, 3 illuminations⇒ whole range of lab conditions
− Works in real-time

Peter Stone
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• Color Constancy: more tediously created maps

− Hand-labeling many images −→ hours of manual effort
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Autonomous Color Learning
• Color Constancy: more tediously created maps

− Hand-labeling many images −→ hours of manual effort

• Use the structured environment

− Robot learns color distributions

• Comparable accuracy, 5 minutes of robot effort

Peter Stone



Summary

• Learning on physical robots

− No simulation, minimal human intervention
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Summary

• Learning on physical robots

− No simulation, minimal human intervention

• Motion: learning for fast walking

• Behavior: acquiring the ball

• Localization: ASAMI

• Vision: color constancy, autonomous color learning

Peter Stone



Other Robotics Research

• TD learning for strategy (Stone, Sutton, Kuhlmann)

• Collaborative surveillance (Ahmadi, Stone)

• “Urban Challenge:” autonomous vehicles (Beeson et al.)

• Autonomous traffic management (Dresner, Stone)
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