Machine Learning on Physical Robots

Prof. Peter Stone

Director, Learning Agents Research Group Department of Computer Sciences The University of Texas at Austin To what degree can autonomous intelligent agents learn in the presence of teammates and/or adversaries in real-time, dynamic domains?

To what degree can autonomous intelligent agents learn in the presence of teammates and/or adversaries in real-time, dynamic domains?

- Autonomous agents
- Multiagent systems
- Machine learning
- Robotics

- They must **sense** their environment.
- They must **decide** what action to take ("think").
- They must **act** in their environment.

- They must **sense** their environment.
- They must **decide** what action to take ("think").
- They must **act** in their environment.

Complete Intelligent Agents

- They must **sense** their environment.
- They must **decide** what action to take ("think").
- They must **act** in their environment.

Complete Intelligent Agents

• Interact with other agents

(Multiagent systems)

- They must **sense** their environment.
- They must **decide** what action to take ("think").
- They must **act** in their environment.

Complete Intelligent Agents

- Interact with other agents (Multiagent systems)
- Improve performance from experience (Learning agents)

- They must **sense** their environment.
- They must **decide** what action to take ("think").
- They must **act** in their environment.

Complete Intelligent Agents

- Interact with other agents (Multiagent systems)
- Improve performance from experience (Learning agents)

Autonomous Bidding, Cognitive Systems, Traffic management, **Robot Soccer**

Goal: By the year 2050, a team of humanoid robots that can beat the human World Cup champion team.

Goal: By the year 2050, a team of humanoid robots that can beat the human World Cup champion team.

• An international **research** initiative

Goal: By the year 2050, a team of humanoid robots that can beat the human World Cup champion team.

- An international **research** initiative
- Drives **research** in many areas:
 - Control algorithms; machine vision, sensing; localization;
 - Distributed computing; real-time systems;
 - Ad hoc networking; mechanical design;

Goal: By the year 2050, a team of humanoid robots that can beat the human World Cup champion team.

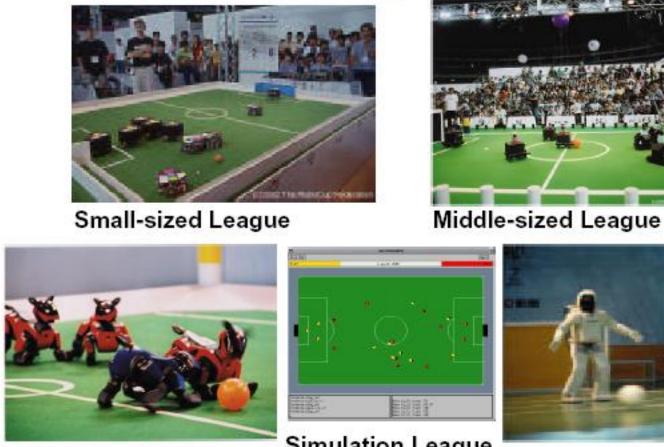
- An international **research** initiative
- Drives **research** in many areas:
 - Control algorithms; machine vision, sensing; localization;
 - Distributed computing; real-time systems;
 - Ad hoc networking; mechanical design;
 - Multiagent systems; machine learning; robotics

Goal: By the year 2050, a team of humanoid robots that can beat the human World Cup champion team.

- An international **research** initiative
- Drives **research** in many areas:
 - Control algorithms; machine vision, sensing; localization;
 - Distributed computing; real-time systems;
 - Ad hoc networking; mechanical design;
 - Multiagent systems; machine learning; robotics

Several Different Leagues

RoboCup Soccer



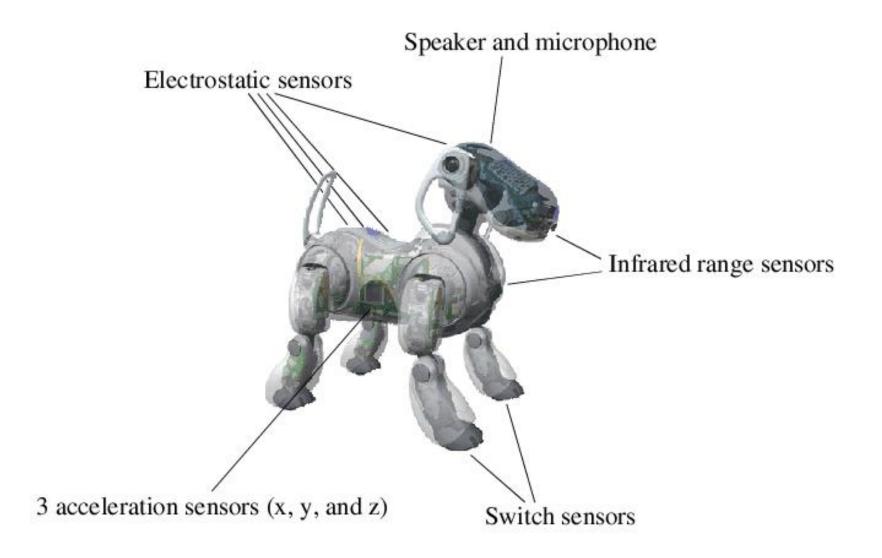
Legged Robot League

Simulation League

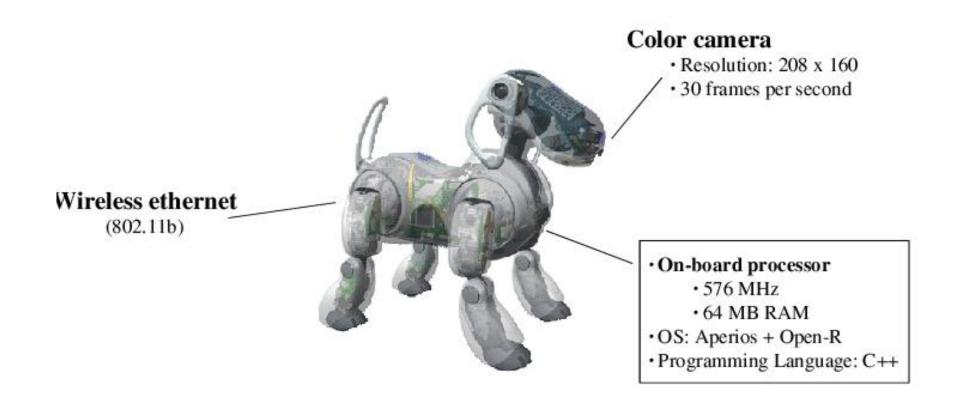
Humanoid League

@ 2003 The RoboCup Rederation

Sony Aibo (ERS-210A, ERS-7)



Sony Aibo (ERS-210A, ERS-7)



Sony Aibo (ERS-210A, ERS-7)

20 degrees of freedom

Creating a team — Subtasks

Creating a team — Subtasks

- Vision
- Localization
- Walking
- Ball manipulation (kicking)
- Individual decision making
- Communication/coordination

Creating a team — Subtasks

- Vision
- Localization
- Walking
- Ball manipulation (kicking)
- Individual decision making
- Communication/coordination

• Barely closed the loop by American Open (May, '03)

- Barely closed the loop by American Open (May, '03)
- Improved significantly by Int'l RoboCup (July, '03)

- Barely closed the loop by American Open (May, '03)
- Improved significantly by Int'l RoboCup (July, '03)
- Won 3rd place at US Open (2004, 2005)
- Quarterfinalist at RoboCup (2004, 2005)

- Barely closed the loop by American Open (May, '03)
- Improved significantly by Int'l RoboCup (July, '03)
- Won 3rd place at US Open (2004, 2005)
- Quarterfinalist at RoboCup (2004, 2005)
- Highlights:
 - Many saves: 1; 2; 3; 4;
 - Lots of goals: CMU; Penn; Penn; Germany;
 - A nice clear
 - A counterattack goal

Post-competition: the research

Post-competition: the research

- Model-based joint control (Stronger, Stone)
- Machine learning for fast walking (Kohl, Stone)
- Learning to acquire the ball (Fidelman, Stone)
- Learning sensor and action models (Stronger, Stone)
- Color constancy on mobile robots (Sridharan, Stone)
- Robust particle filter localization (Sridharan, Kuhlmann, Stone)
- Autonomous Color Learning (Sridharan, Stone)

Policy Gradient RL to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

Policy Gradient RL to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

- Start with a **parameterized walk**
- Learn fastest possible parameters

Policy Gradient RL to learn fast walk

Goal: Enable an Aibo to walk as fast as possible

- Start with a **parameterized walk**
- Learn fastest possible parameters
- No simulator available:
 - Learn entirely on robots
 - Minimal human intervention

- Walks that "come with" Aibo are **slow**
- RoboCup soccer: 25+ Aibo teams internationally
 - Motivates faster walks

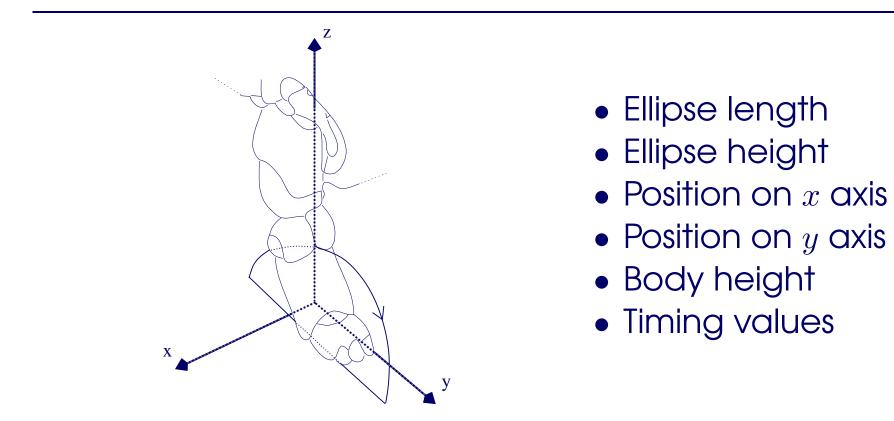
- Walks that "come with" Aibo are **slow**
- **RoboCup** soccer: **25+ Aibo teams** internationally
 - Motivates faster walks

Hand-tuned gaits (2003)			Learned gaits	
German Team	UT Austin Villa	UNSW	Hornby et al. (1999)	
Team	VIIIO	014244	(1999)	(2003)
230 mm/s	245	254	170	270 (±5)

A Parameterized Walk

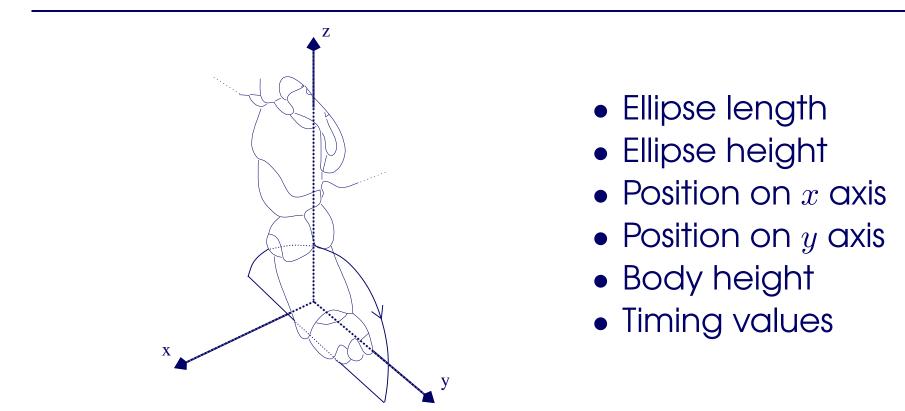
- Developed from scratch as part of UT Austin Villa 2003
- Trot gait with elliptical locus on each leg

Locus Parameters



12 continuous parameters

Locus Parameters



12 continuous parameters

- Hand tuning by April, '03: **140 mm/s**
- Hand tuning by July, '03: **245 mm/s**

Experimental Setup

• Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) =$ walk speed when using π

Experimental Setup

- Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) =$ walk **speed** when using π
- Training Scenario
 - Robots time themselves traversing fixed distance
 - Multiple traversals (3) per policy to account for **noise**

Experimental Setup

- Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) =$ walk speed when using π
- Training Scenario
 - Robots time themselves traversing fixed distance
 - Multiple traversals (3) per policy to account for noise
 - Multiple robots evaluate policies simultaneously
 - Off-board computer collects results, assigns policies

Experimental Setup

- Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) =$ walk speed when using π
- Training Scenario
 - Robots time themselves traversing fixed distance
 - Multiple traversals (3) per policy to account for **noise**
 - Multiple robots evaluate policies simultaneously
 - Off-board computer collects results, assigns policies

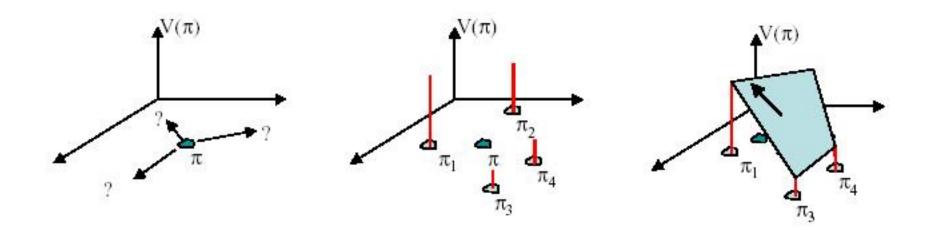
No human intervention except battery changes

• From π want to move in direction of **gradient** of $V(\pi)$

- From π want to move in direction of **gradient** of $V(\pi)$
 - Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: **estimate** empirically

- From π want to move in direction of gradient of $V(\pi)$ - Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: estimate empirically
- Evaluate **neighboring policies** to estimate gradient
- Each trial randomly varies every parameter

- From π want to move in direction of **gradient** of $V(\pi)$ - Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: **estimate** empirically
- Evaluate **neighboring policies** to estimate gradient
- Each trial randomly varies every parameter



Experiments

- Started from **stable**, but fairly slow gait
- Used **3 robots** simultaneously
- Each iteration takes 45 traversals, $7\frac{1}{2}$ minutes

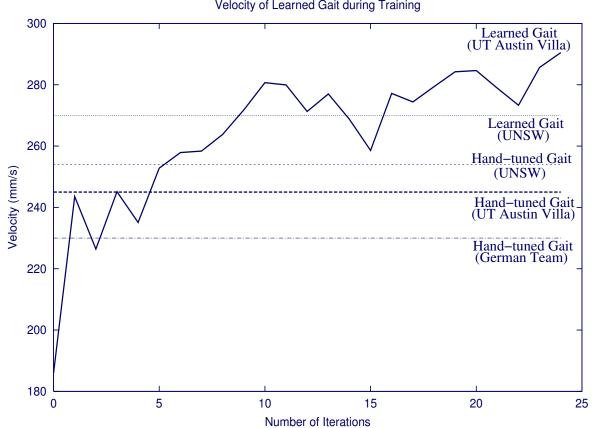
Experiments

- Started from **stable**, but fairly slow gait
- Used **3 robots** simultaneously
- Each iteration takes 45 traversals, $7\frac{1}{2}$ minutes

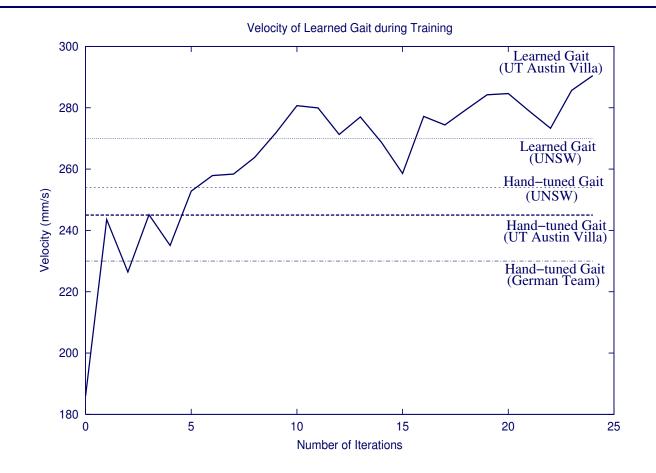
After learning

• 24 iterations = 1080 field traversals, \approx 3 hours

Results



Results



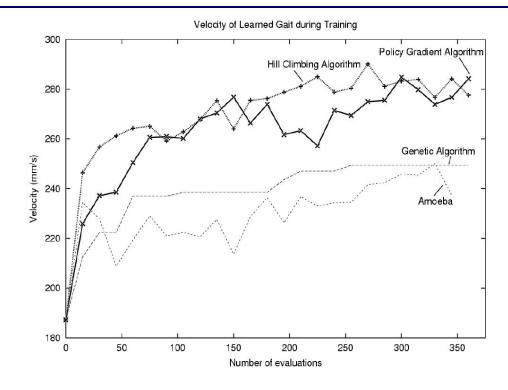
Additional iterations didn't help

• Spikes: evaluation **noise**? large **step size**?

Learned Parameters

Parameter	Initial	ϵ	Best
	Value		Value
Front ellipse:			
(height)	4.2	0.35	4.081
(x offset)	2.8	0.35	0.574
(y offset)	4.9	0.35	5.152
Rear ellipse:			
(height)	5.6	0.35	6.02
(x offset)	0.0	0.35	0.217
(y offset)	-2.8	0.35	-2.982
Ellipse length	4.893	0.35	5.285
Ellipse skew multiplier	0.035	0.175	0.049
Front height	7.7	0.35	7.483
Rear height	11.2	0.35	10.843
Time to move			
through locus	0.704	0.016	0.679
Time on ground	0.5	0.05	0.430

Algorithmic Comparison, Robot Port



Before learning

After learning

- Used policy gradient RL to learn fastest Aibo walk
- All learning done **on real robots**
- No human itervention (except battery changes)

- Machine learning for fast walking (Kohl, Stone)
- Learning to acquire the ball (Fidelman, Stone)
- Learning sensor and action models (Stronger, Stone)
- Color constancy on mobile robots (Sridharan, Stone)
- Autonomous Color Learning (Sridharan, Stone)

Grasping the Ball

- Three stages: walk to ball; slow down; lower chin
- Head proprioception, IR chest sensor \mapsto ball distance
- Movement specified by **4 parameters**

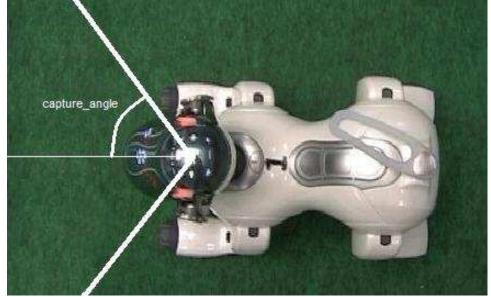
Grasping the Ball

- Three stages: walk to ball; slow down; lower chin
- Head proprioception, IR chest sensor \mapsto ball distance
- Movement specified by **4 parameters**

Brittle!

Parameterization

- slowdown_dist: when to slow down
- **slowdown_factor:** how much to slow down
- capture_angle: when to stop turning



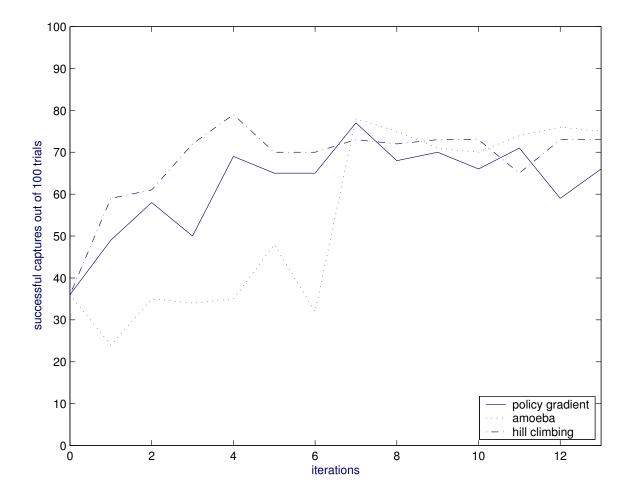
• capture_dist: when to put down head

Learning the Chin Pinch

- Binary, noisy reinforcement signal: multiple trials
- Robot evaluates self: **no human intervention**

Results

• Evaluation of **policy gradient**, **hill climbing**, **amoeba**



What it learned

Policy	slowdown	slowdown	capture	capture	Success
	dist	factor	angle	dist	rate
Initial	200mm	0.7	15.0°	110mm	36%
Policy gradient	125mm	1	17.4 ⁰	152mm	64%
Amoeba	208mm	1	33.4 ^o	162mm	69%
Hill climbing	240mm	1	35.0 ^o	170mm	66%

Instance of Layered Learning

- For domains too **complex** for tractably mapping state features $S \mapsto$ outputs O
- Hierarchical subtask decomposition **given**: $\{L_1, L_2, \ldots, L_n\}$
- Machine learning: **exploit data** to train, adapt
- Learning in one layer feeds into next layer

- Machine learning for fast walking (Kohl, Stone)
- Learning to acquire the ball (Fidelman, Stone)
- Learning sensor and action models (Stronger, Stone)
- Color constancy on mobile robots (Sridharan, Stone)
- Autonomous Color Learning (Sridharan, Stone)

- Mobile robots rely on **models of their actions and sensors**
 - Typically tuned **manually**: Time-consuming

- Mobile robots rely on **models of their actions and sensors**
 - Typically tuned **manually**: Time-consuming
- Autonomous Sensor and Actuator Model Induction (ASAMI)

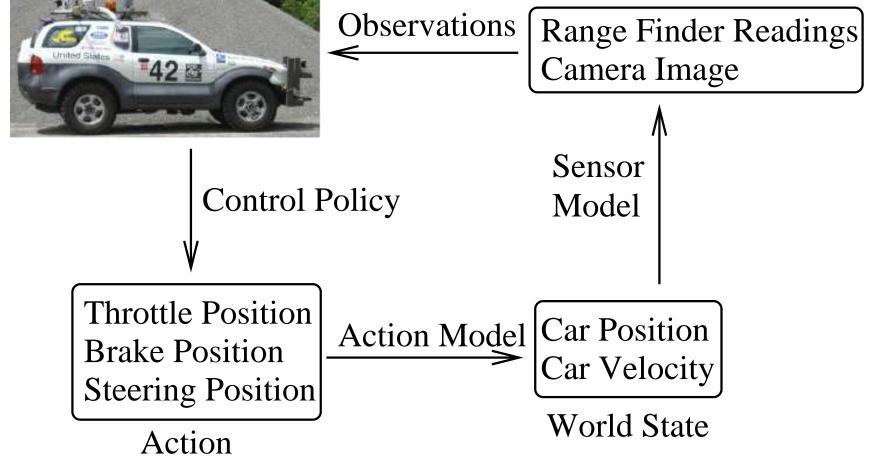
- Mobile robots rely on **models of their actions and sensors**
 - Typically tuned **manually**: Time-consuming
- Autonomous Sensor and Actuator Model Induction (ASAMI)
- ASAMI is **autonomous**: no external feedback
 - Developmental robotics

- Mobile robots rely on **models of their actions and sensors**
 - Typically tuned **manually**: Time-consuming
- Autonomous Sensor and Actuator Model Induction (ASAMI)
- ASAMI is **autonomous**: no external feedback
 - Developmental robotics
- Techinique is implemented and tested in:
 - One-dimensional scenario: Sony Aibo ERS-7
 - Aibo in two-dimensional area
 - Second robotic platform: an autonomous car

Action and Sensor Models

• Mobile robots rely on models of their actions and sensors

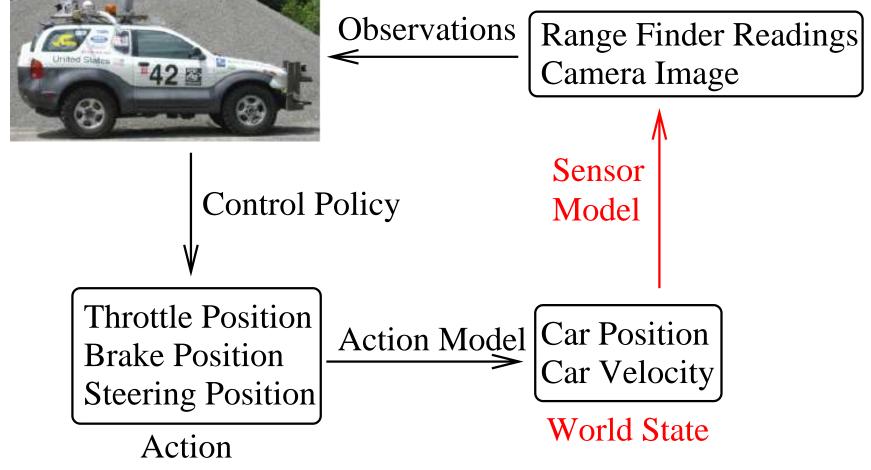
Agent



Action and Sensor Models

• Mobile robots rely on models of their actions and sensors

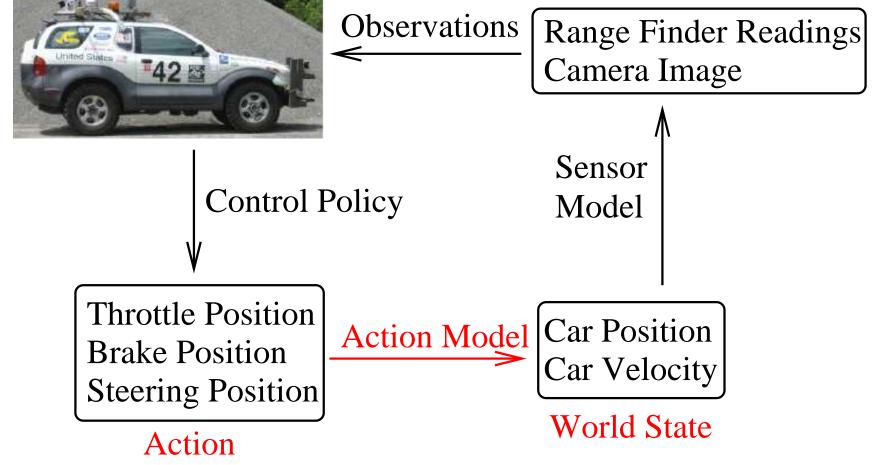
Agent



Action and Sensor Models

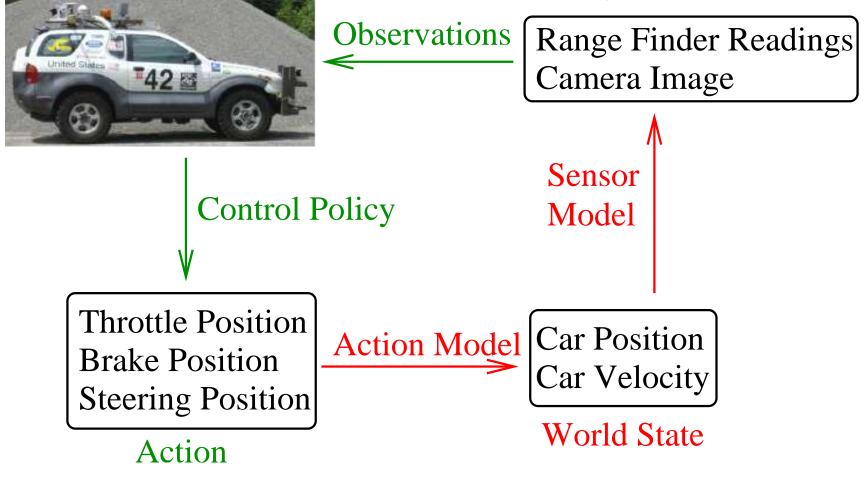
• Mobile robots rely on models of their actions and sensors

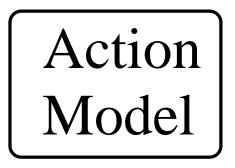
Agent

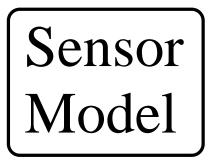


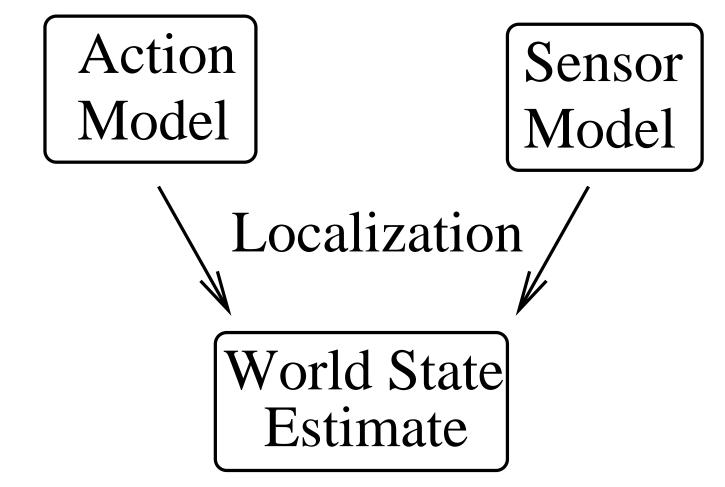
• Action model, sensor model, world state unknown:

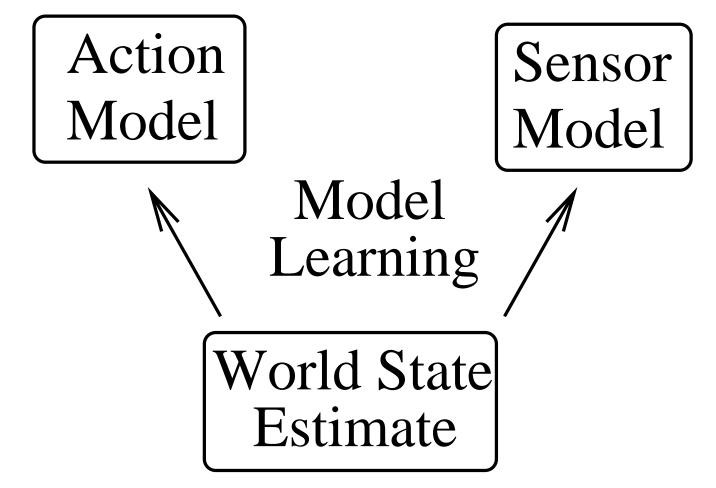
Agent

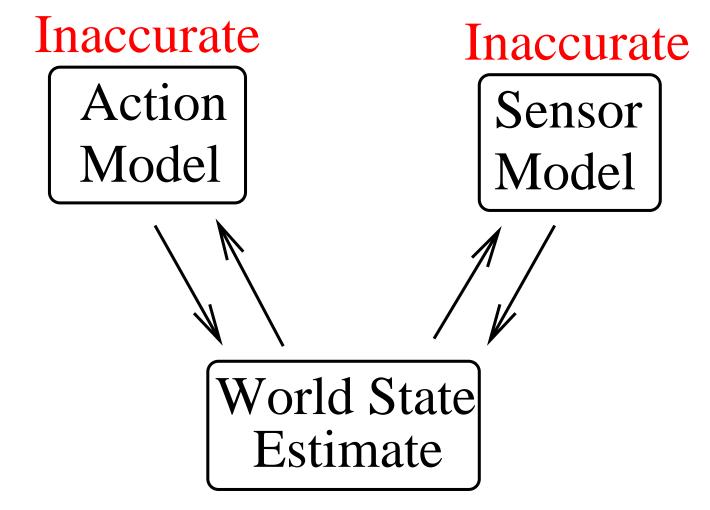


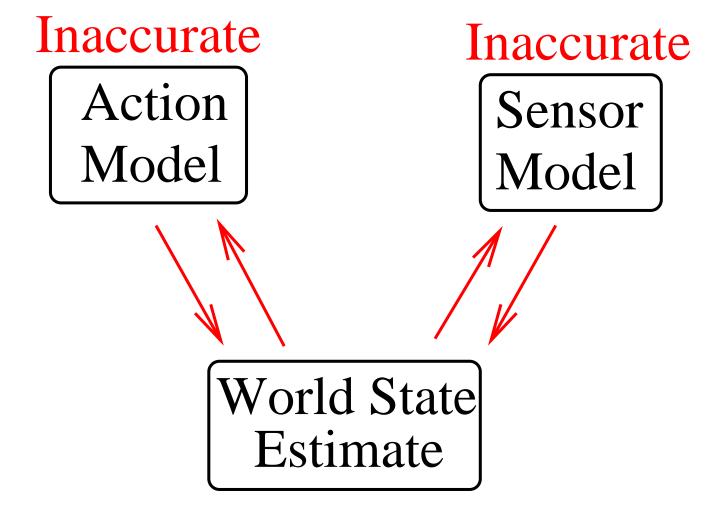






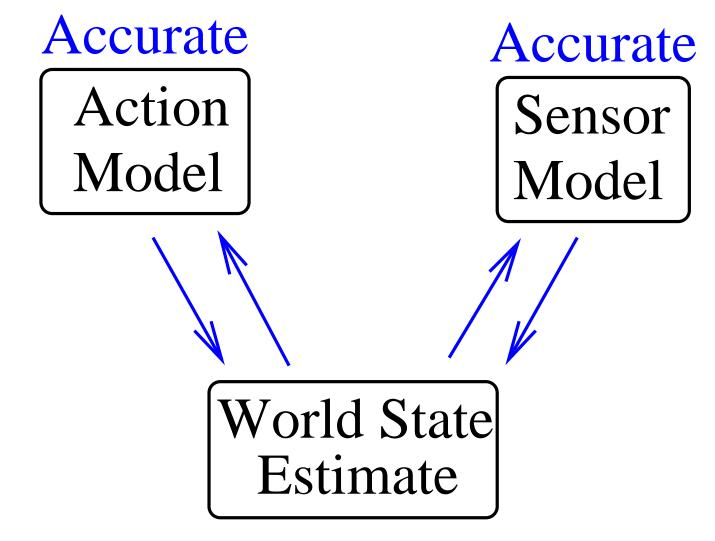


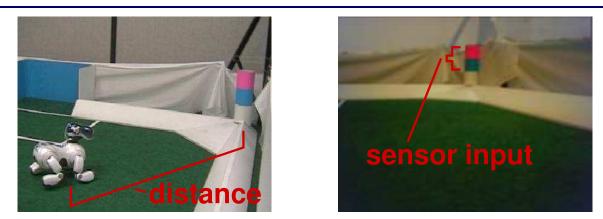




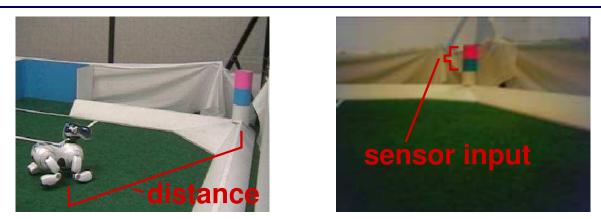
General Methodology

• Given the robot's actions and observations:





- **Sensor model**: beacon height in image \mapsto distance
 - Mapping derived from camera specs not accurate



- **Sensor model**: beacon height in image \mapsto distance
 - Mapping derived from camera specs not accurate
- Action model: parametrized walking, $W(x) \mapsto velocity$
 - $x \in [-300, 300]$ is attempted velocity
 - Not accurate due to friction, joint behavior

Experimental Setup

- Aibo alternates walking forwards and backwards
 - Forwards: random action in [0, 300]
 - Backward phase: random action in [-300, 0]
 - Switch based on beacon size in image

Experimental Setup

- Aibo alternates walking forwards and backwards
 - Forwards: random action in [0, 300]
 - Backward phase: random action in [-300, 0]
 - Switch based on beacon size in image
- Aibo keeps self pointed at beacon

- Both models provide info about the robot's location
- Sensor model: observation $obs_k \mapsto$ location: $x_s(t_k) = S(obs_k)$

- Both models provide info about the robot's location
- Sensor model: observation $obs_k \mapsto$ location: $x_s(t_k) = S(obs_k)$

• Action model: action command $C(t) \mapsto$ velocity: $x_a(t) = x(0) + \int_0^t A(C(s)) \, ds$

- Both models provide info about the robot's location
- Sensor model: observation $obs_k \mapsto$ location: $x_s(t_k) = S(obs_k)$

• Action model: action command $C(t) \mapsto$ velocity: $x_a(t) = x(0) + \int_0^t A(C(s)) \, ds$

• Goal: learn arbitrary continuous functions, A and S

- Both models provide info about the robot's location
- Sensor model: observation $obs_k \mapsto$ location: $x_s(t_k) = S(obs_k)$

• Action model: action command $C(t) \mapsto$ velocity: $x_a(t) = x(0) + \int_0^t A(C(s)) \, ds$

• **Goal:** learn arbitrary continuous functions, A and S – Use polynomial regression as function approximator

- Both models provide info about the robot's location
- Sensor model: observation $obs_k \mapsto$ location: $x_s(t_k) = S(obs_k)$

• Action model: action command $C(t) \mapsto$ velocity: $x_a(t) = x(0) + \int_0^t A(C(s)) \, ds$

Goal: learn arbitrary continuous functions, A and S
 Use polynomial regression as function approximator
 Models learned in arbitrary units

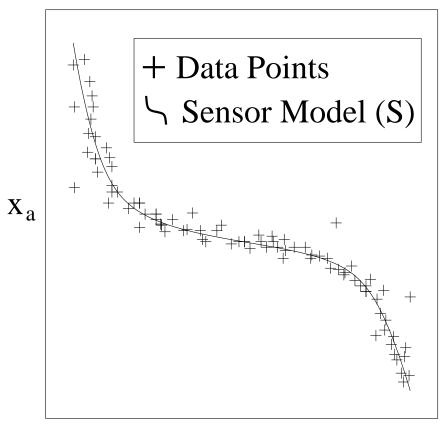
UTCS

Learning a Sensor Model

- Assume accurate action model
- Consider ordered pairs $(obs_k, x_a(t_k))$
- Fit polynomial to data

Learning a Sensor Model

- Assume accurate action model
- Consider ordered pairs $(obs_k, x_a(t_k))$
- Fit polynomial to data

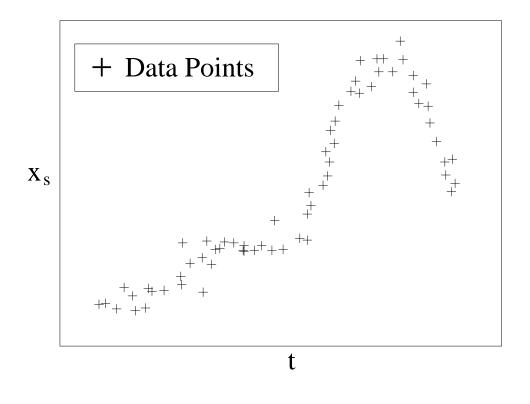


Learning an Action Model

- Assume accurate sensor model
- Plot $x_s(t)$ against time

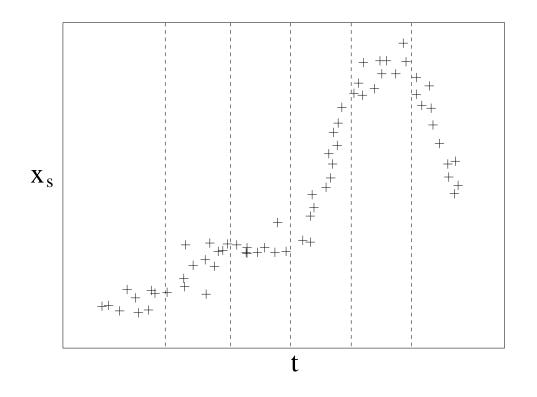
Learning an Action Model

- Assume accurate sensor model
- Plot $x_s(t)$ against time



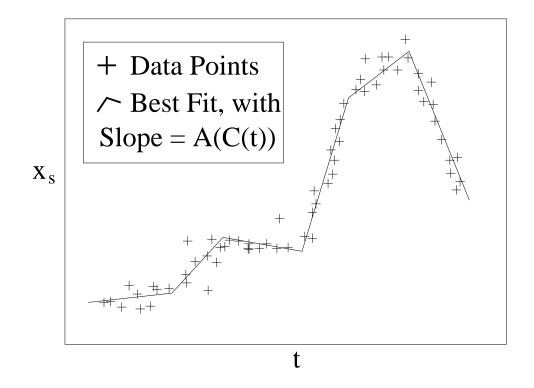
Learning an Action Model

- Assume accurate sensor model is accurate
- Plot $x_s(t)$ against time



Learning an Action Model (cont.)

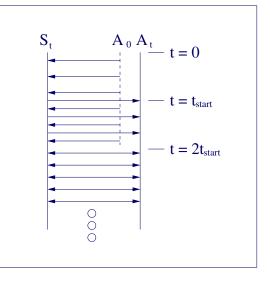
- Compute action model that minimizes the error
- Problem equivalent to another multivariate regression



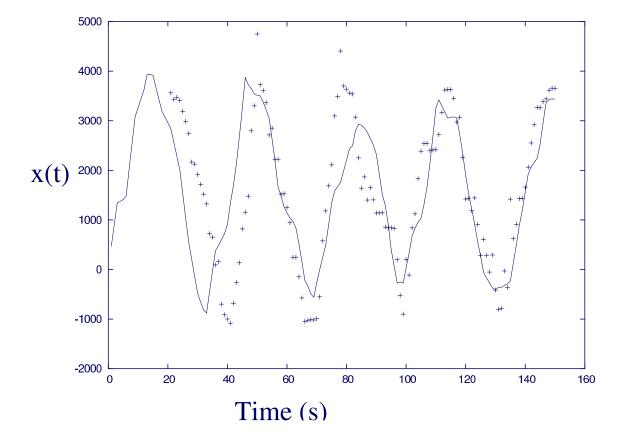
- Both models improve via **bootstrapping**
 - Maintain two notions of location, $x_s(t)$ and $x_a(t)$
 - Each used to fit the other model

- Both models improve via **bootstrapping**
 - Maintain two notions of location, $x_s(t)$ and $x_a(t)$
 - Each used to fit the other model
- Use weighted regression
 - $-w_i=\gamma^{n-i}$, $\gamma<1$
 - Can still be computed incrementally

- Both models improve via **bootstrapping**
 - Maintain two notions of location, $x_s(t)$ and $x_a(t)$
 - Each used to fit the other model
- Use weighted regression
 - $-w_i=\gamma^{n-i}$, $\gamma<1$
 - Can still be computed incrementally
- Ramping up



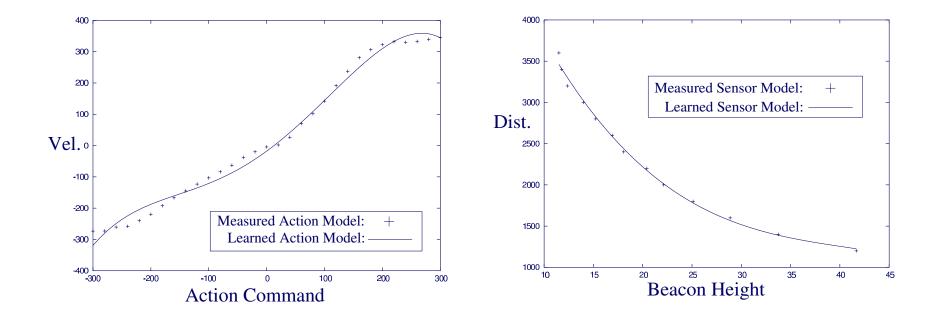
• Over 2.5 min., $x_s(t)$ and $x_a(t)$ come into strong agreement



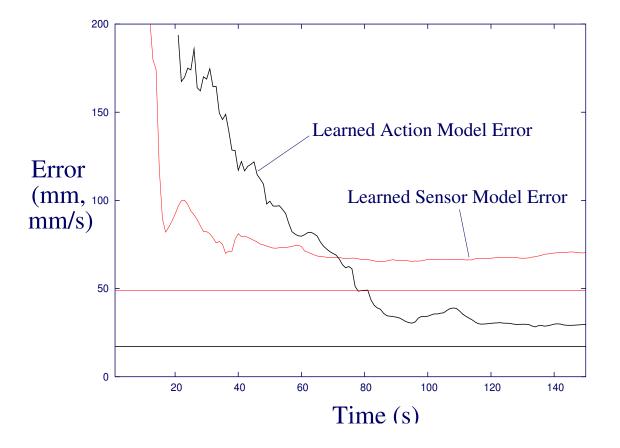
- Run ASAMI for pre-set amount of time (2.5 minutes)
- Measure actual models with **stopwatch and ruler**

- Run ASAMI for pre-set amount of time (2.5 minutes)
- Measure actual models with **stopwatch and ruler**
- Compare measured vs. learned after best scaling

- Run ASAMI for pre-set amount of time (2.5 minutes)
- Measure actual models with stopwatch and ruler
- Compare measured vs. learned after best scaling



• Average fitness of model over 15 runs

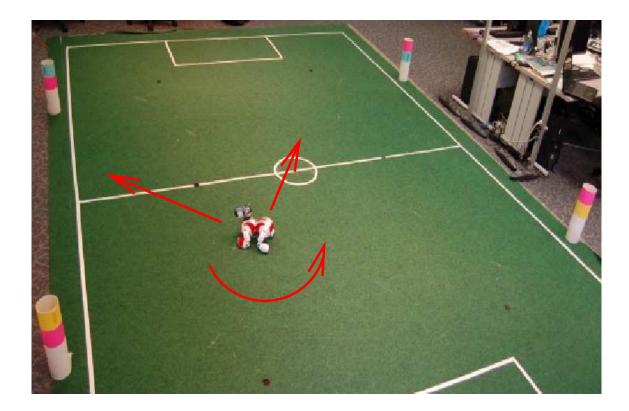


Learning in Two Dimensions

- Robot learns while traversing rectangular field
 - Combinations of forward, sideways, and turning motion
 - Field has four color-coded cylindrical landmarks

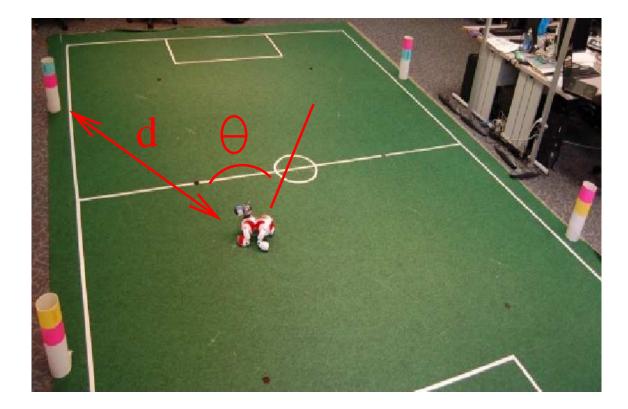
Learning in Two Dimensions

- Robot learns while traversing rectangular field
 - Combinations of forward, sideways, and turning motion
 - Field has four color-coded cylindrical landmarks



Learning in Two Dimensions

- Robot learns while traversing rectangular field
 - Combinations of forward, sideways, and turning motion
 - Field has four color-coded cylindrical landmarks



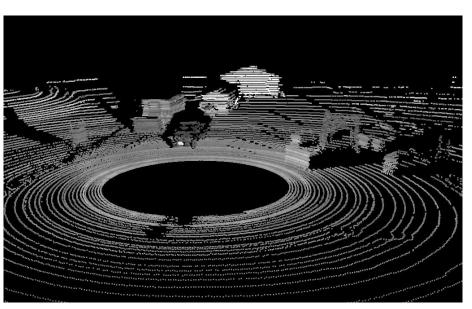
2nd Robotic Platform: Autonomous Car

 Self-driving car provides many challenges for autonomous model learning

- Actions lead to accelerations, angular velocity:
 - Throttle, brake, and steering position
- Sensors provide information about pose and map:
 - Three-dimensional LIDAR
- Again learn both models starting without accurate estimate of either

3d LIDAR for Autonomous Cars

• The Velodyne LIDAR sensor:



- 64 lasers return distance readings
- Each laser is at a different vertical angle and different horizontal offset
- Unit spins around vertical axis at 10Hz

- **ASAMI:** Autonomous, no external feedback
- Computationally efficient
- Starts with poor action model, no sensor model
 - Learns **accurate** approximations to both models
 - Models are to scale with each other

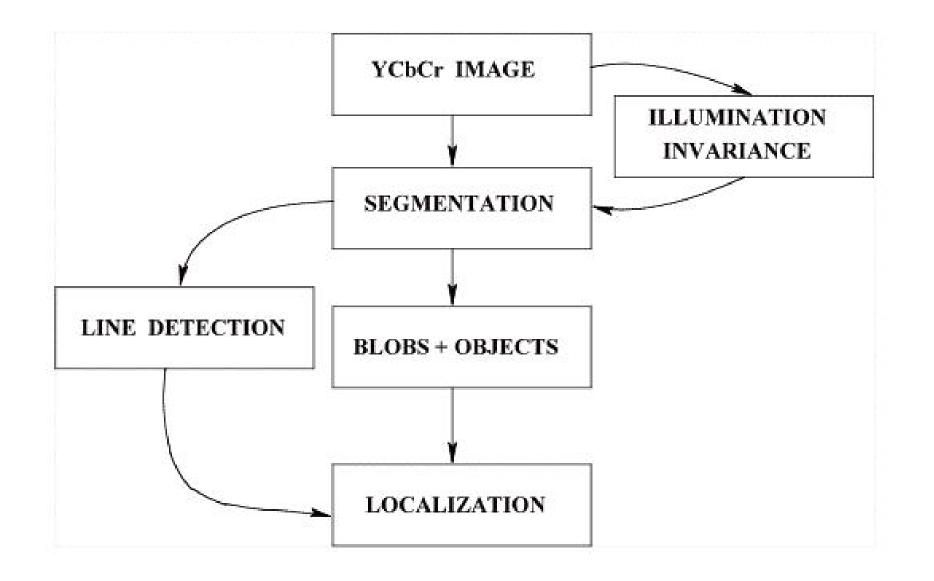
- Machine learning for fast walking (Kohl, Stone)
- Learning to acquire the ball (Fidelman, Stone)
- Learning sensor and action models (Stronger, Stone)
- Color constancy on mobile robots (Sridharan, Stone)
- Autonomous Color Learning (Sridharan, Stone)

 Visual system's ability to recognize true color across variations in environment

- Visual system's ability to recognize true color across variations in environment
- Challenge: Nonlinear variations in sensor response with change in illumination

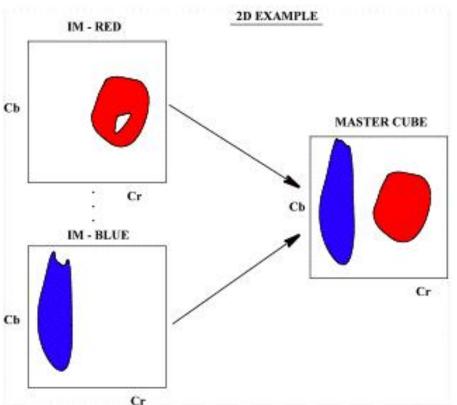
- Visual system's ability to recognize true color across variations in environment
- Challenge: Nonlinear variations in sensor response with change in illumination
- Mobile robots:
 - Computational limitations
 - Changing camera positions

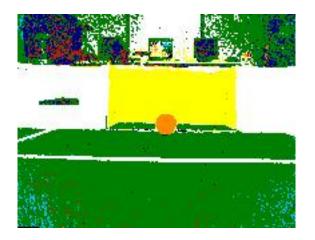
Vision Flowchart

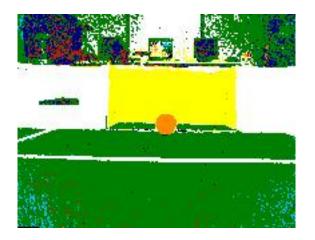


Segmentation

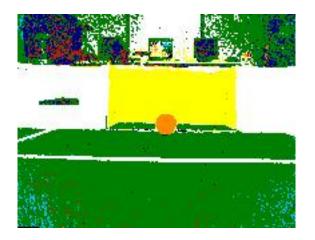
- Color
 Segmentation:
 - Hand-label discrete colors.
 - Intermediate color maps.
 - NNr weighted average – Master color cube.
 - 128x128x128 color map - 2MB.

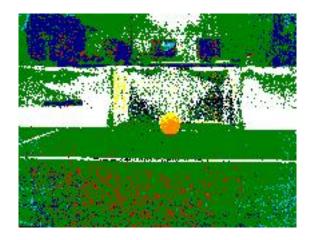






Department of Computer Sciences The University of Texas at Austin





Department of Computer Sciences The University of Texas at Austin

Peter Stone

- Match current performance in **changing lighting**
- Experiments on ERS-210A robots

- Color cube: $128 \times 128 \times 128$ pixel values \mapsto color label
- Nearest Neighbor/weighted average approach

- Color cube: $128 \times 128 \times 128$ pixel values \mapsto color label
- Nearest Neighbor/weighted average approach

On-board testing:

- Color cube: $128 \times 128 \times 128$ pixel values \mapsto color label
- Nearest Neighbor/weighted average approach

On-board testing:

- Segment images using color map

- Color cube: $128 \times 128 \times 128$ pixel values \mapsto color label
- Nearest Neighbor/weighted average approach

On-board testing:

- **Segment** images using color map
- Run-length encoding, region growing: detect markers

- Color cube: $128 \times 128 \times 128$ pixel values \mapsto color label
- Nearest Neighbor/weighted average approach

On-board testing:

- **Segment** images using color map
- Run-length encoding, region growing: **detect markers**
- Markers used for Localization
- Higher level strategies and **action selection**

- Color cube: $128 \times 128 \times 128$ pixel values \mapsto color label
- Nearest Neighbor/weighted average approach

On-board testing:

- Segment images using color map
- Run-length encoding, region growing: **detect markers**
- Markers used for Localization
- Higher level strategies and **action selection**

Real-time color constancy without degradation

• Most previous: static cameras, few colors

- Most previous: static cameras, few colors
- Here: discrete 2-illumination case: 1500lux vs. 400lux

- Most previous: static cameras, few colors
- Here: discrete 2-illumination case: 1500lux vs. 400lux
- Compare image pixel **distributions** (in normalized RGB)

- Most previous: static cameras, few colors
- Here: discrete 2-illumination case: 1500lux vs. 400lux
- Compare image pixel **distributions** (in normalized RGB)
- **KL-divergence** as similarity metric:
 - Given image, determine distribution in (r,g) space
 - Compare distribution A,B (N=64)

$$KL(A,B) = -\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} (A_{i,j} \ln \frac{B_{i,j}}{A_{i,j}})$$

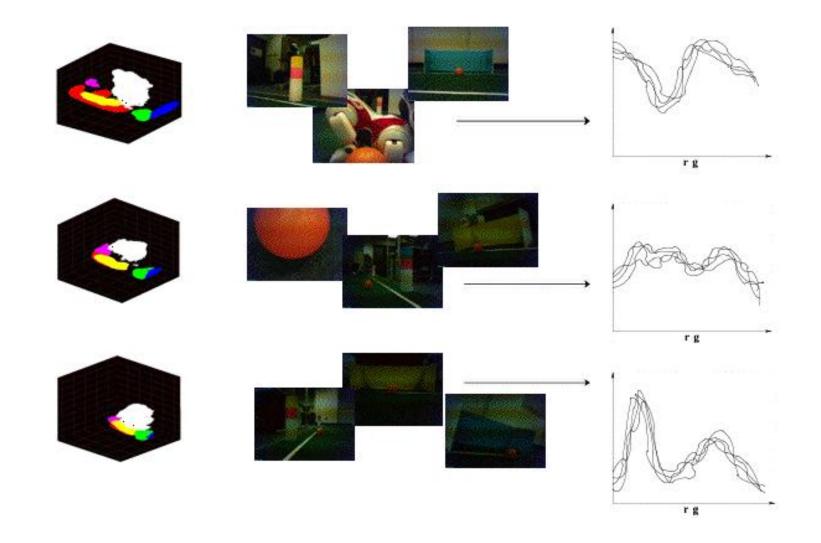
- Small value \Rightarrow similar

- Most previous: static cameras, few colors
- Here: discrete 2-illumination case: 1500lux vs. 400lux
- Compare image pixel **distributions** (in normalized RGB)
- **KL-divergence** as similarity metric:
 - Given image, determine distribution in (r,g) space
 - Compare distribution A,B (N=64)

$$KL(A,B) = -\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} (A_{i,j} \ln \frac{B_{i,j}}{A_{i,j}})$$

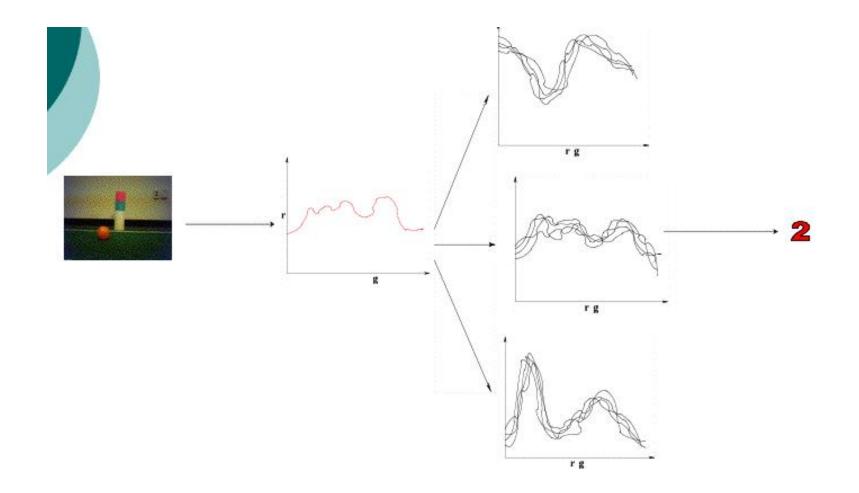
- Small value \Rightarrow similar
- **Robust** to large peaks in observed color distrubutions

Training Phase



UTRES Department of Computer Sciences The University of Texas at Austin

Testing Phase



- Test on *find-and-walk-to-ball* task

- Test on *find-and-walk-to-ball* task

Lighting transition	Time(sec)
None	15.2 ± 0.8
Bright/Dark	26.5 ± 1.7
Dark/Bright	20.1 ± 2.7

- Also tested intermediate illuminations; adversarial case

- Test on *find-and-walk-to-ball* task

Lighting transition	Time(sec)
None	15.2 ± 0.8
Bright/Dark	26.5 ± 1.7
Dark/Bright	20.1 ± 2.7

Also tested intermediate illuminations; adversarial case
 On ERS-7, 3 illuminations \Rightarrow whole range of lab conditions

- Test on *find-and-walk-to-ball* task

Lighting transition	Time(sec)
None	15.2 ± 0.8
Bright/Dark	26.5 ± 1.7
Dark/Bright	20.1 ± 2.7

- Also tested intermediate illuminations; adversarial case
- On **ERS-7**, 3 illuminations \Rightarrow whole range of lab conditions - Works in real-time

Autonomous Color Learning

- Color Constancy: **more** tediously created maps
 - Hand-labeling many images \longrightarrow hours of **manual effort**

Autonomous Color Learning

- Color Constancy: **more** tediously created maps
 - Hand-labeling many images \longrightarrow hours of **manual effort**
- Use the structured environment
 - Robot learns color distributions

Autonomous Color Learning

- Color Constancy: **more** tediously created maps
 - Hand-labeling many images hours of manual effort
- Use the structured environment
 - Robot learns color distributions

• Comparable accuracy, 5 minutes of robot effort

Summary

• Learning on **physical robots**

- No simulation, minimal human intervention

Summary

- Learning on **physical robots**
 - No simulation, minimal human intervention
- Motion: learning for fast walking
- Behavior: acquiring the ball
- Localization: ASAMI
- Vision: color constancy, autonomous color learning

- TD learning for **strategy** (Stone, Sutton, Kuhlmann)
- Collaborative surveillance (Ahmadi, Stone)
- "Urban Challenge:" autonomous vehicles (Beeson et al.)
- Autonomous **traffic management** (Dresner, Stone)

Thanks to all the Students Involved!

- Dan Stronger, Nate Kohl, Peggy Fidelman, Mohan Sridharan
- Other members of the UT Austin Villa Legged Robot Team
- http://www.cs.utexas.edu/~AustinVilla

Thanks to all the Students Involved!

- Dan Stronger, Nate Kohl, Peggy Fidelman, Mohan Sridharan
- Other members of the UT Austin Villa Legged Robot Team
- http://www.cs.utexas.edu/~AustinVilla
- Fox Sports World for inspiration!

