CS394R Reinforcement Learning: Theory and Practice

Peter Stone

Department of Computer Science The University of Texas at Austin

Good Afternoon Colleagues

• Are there any questions?

Good Afternoon Colleagues

• Are there any questions?

• Next week - multiagent learning

- Next week multiagent learning
- Final projects due next Thursday at the beginning of class, but...

- Next week multiagent learning
- Final projects due next Thursday at the beginning of class, but...
- 4pm Friday is when I need them to be able to look on the way home

- Next week multiagent learning
- Final projects due next Thursday at the beginning of class, but...
- 4pm Friday is when I need them to be able to look on the way home
- So *if in class on Thursday,* due electronically Friday at 4pm

- Next week multiagent learning
- Final projects due next Thursday at the beginning of class, but...
- 4pm Friday is when I need them to be able to look on the way home
- So *if in class on Thursday,* due electronically Friday at 4pm
- Also put one hard copy outside my office by then.

- Next week multiagent learning
- Final projects due next Thursday at the beginning of class, but...
- 4pm Friday is when I need them to be able to look on the way home
- So *if in class on Thursday,* due electronically Friday at 4pm
- Also put one hard copy outside my office by then.
- After that, considered late.

• On-policy Least squares projection could cause Policy Iteration to diverge.

- On-policy Least squares projection could cause Policy Iteration to diverge.
- Example from Koller and Parr 2000:

- On-policy Least squares projection could cause Policy Iteration to diverge.
- Example from Koller and Parr 2000:
 - 4 states: s_0, s_1, s_2, s_3
 - 2 actions: R, L (10% chance of moving opposite directions)
 - Rewards of +1 in states s_1 and s_2
 - basis functions are 1, x, x^2 (mapping from s_x)

- On-policy Least squares projection could cause Policy Iteration to diverge.
- Example from Koller and Parr 2000:
 - 4 states: s_0, s_1, s_2, s_3
 - 2 actions: R, L (10% chance of moving opposite directions)
 - Rewards of +1 in states s_1 and s_2
 - basis functions are 1, x, x^2 (mapping from s_x)
 - Possible functions are parabolas

- On-policy Least squares projection could cause Policy Iteration to diverge.
- Example from Koller and Parr 2000:
 - 4 states: s_0, s_1, s_2, s_3
 - 2 actions: R, L (10% chance of moving opposite directions)
 - Rewards of +1 in states s_1 and s_2
 - basis functions are 1, x, x^2 (mapping from s_x)
 - Possible functions are parabolas
 - Starting with RRRR policy leads to poor approximation (graph in paper), iterates to LLLL and oscillates

- On-policy Least squares projection could cause Policy Iteration to diverge.
- Example from Koller and Parr 2000:
 - 4 states: s_0, s_1, s_2, s_3
 - 2 actions: R, L (10% chance of moving opposite directions)
 - Rewards of +1 in states s_1 and s_2
 - basis functions are 1, x, x^2 (mapping from s_x)
 - Possible functions are parabolas
 - Starting with RRRR policy leads to poor approximation (graph in paper), iterates to LLLL and oscillates
 - Mainly because stationary distribution rarely visits states s_0 and s_1 .

