How to judge policy performance?

Discussion on analysis methods
Our setting

• Multi-armed bandit problem
 – \(n \) “arms” (=actions, \(A = \{a_1 \ldots a_n\} \))
 – At each time step \(t \) the agent chooses an action
 • Or a distribution over actions for step \(t \), \(p_t \)
 – The chosen action yields some reward
 • Or expected reward \(\sum_{i=1}^{n} p_t^i r_t^i \)
 • (No significant difference between losses and rewards)

• How would you judge how well an agent is doing?
Example

• Very large action space \((n \text{ actions})\)
• A single optimal action \(a^*\) with reward \(r\)
• A small subset of actions \(|A_{\text{suboptimal}}| = m, m \ll n\), with reward \((1 - \epsilon)r, 0 < \epsilon \ll 1\).
• All the other actions yield a reward of \(0\).

• How should we judge our policy?
Example

• Very large action space \((n \text{ actions})\)

• A single optimal action \(a^*\) with reward \(r\)

• A small subset of actions \(|A_{\text{suboptimal}}| = m\), \(m \ll n\), with reward \((1 - \epsilon)r\), \(0 < \epsilon \ll 1\).

• All the other actions yield a reward of 0.

• How should we judge our policy?
 – Depends on what we want!
 – Optimal policy? Accumulated reward?
 – Asymptotic or bounded? Etc...
Non-stationary case

• What does optimality mean in the non-stationary case?
• What do we need to assume in order for our policy (or any policy) to be effective?
Non-stationary case

• What does optimality mean in the non-stationary case?

• What do we need to assume in order for our policy (or any policy) to be effective?

• Are we still making some hidden assumptions?
Non-stationary case

• What does optimality mean in the non-stationary case?

• What do we need to assume in order for our policy (or any policy) to be effective?

• Our we still making some hidden assumptions?
 – We assume the rewards for the actions are independent...
 – Does that assumption always hold?
Our setting, revisited

• It would be nice if we didn’t need to assume anything about the reward distributions per action.

• Can we still get some concrete guarantees?
Adversarial model

• At each time step t, our agent chooses an action a_t.

• At that point, an adversary, which has full control over the environment, chooses how to assign the reward vector for all the actions.
 – Think of it as “non-stationary with malice”…

• The agent sees the reward it received for a_t.

• How can we judge performance now? Can we still simply consider accumulated reward?
Regret I

- Can’t compare to the series of optimal actions (why?).
- Instead, let’s compare ourselves to the best single action we could have stuck with the entire run of $t = 1..T$.

Let our performance be $A = \sum_{t=1}^{T} \sum_{i=1}^{n} p_t^i r_t^i$

- Let $r_{1..T}^i = \sum_{t=1}^{T} r_t^i$, then:
 $$r_{1..T}^{best} = \max_i \{ r_{1..T}^i \}$$

- We define:
 $$regret = \min\{ r_{1..T}^{best} - A, 0 \}$$ (why do we need the “min”?)

- This is called external regret.
Regret Example I

- 6 actions, 6 time steps:

<table>
<thead>
<tr>
<th>Time</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$t = 2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t = 3$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t = 4$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$t = 5$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t = 6$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Our series of actions:

 $- a_1 \rightarrow a_5 \rightarrow a_3 \rightarrow a_3 \rightarrow a_3 \rightarrow a_6$
Regret Example I

- 6 actions, 6 time steps:

<table>
<thead>
<tr>
<th>Time</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$t = 2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t = 3$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t = 4$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$t = 5$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t = 6$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Maximal possible reward – 6
- Regret? None. (why?)
Regret Example II

• 6 actions, 6 time steps:

<table>
<thead>
<tr>
<th>Time</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$t = 2$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t = 3$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t = 4$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$t = 5$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t = 6$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

• Our series of actions:

$\rightarrow a_1 \rightarrow a_5 \rightarrow a_3 \rightarrow a_3 \rightarrow a_3 \rightarrow a_6$
Regret Example II

- 6 actions, 6 time steps:

<table>
<thead>
<tr>
<th>Time</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$t = 2$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t = 3$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t = 4$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$t = 5$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t = 6$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Maximal possible reward – still 6
- Regret? Aplenty! (3, to be exact)
Regret II

• Another option: what if we compared ourselves to a small modification of our own policy?

• For instance, “every time you took action i, you should have actually taken action j”.

• This is the idea behind internal regret.

• Can be extended to “swap regret” (full mapping from actions to actions).

• Other notions exist (tracking regret, for instance, which reflects competitive analysis).
Summary and discussion

• How to compare performance in n-armed bandit settings?
• What are our assumptions?

• Stochastic vs. adversarial
• Regret

• Questions?
• Thank you!
References

• Class notes, “Computational Game Theory”, taught by Prof. Yishay Mansour, TAU, Spring 2010.

• Class notes, “Online Algorithms”, taught by Prof. Yossi Azar, TAU, Fall 2009.
