
Applying LSTD on Example 6.2 of Sutton and Barto
(1998): probability and linear algebra perspective.
Parts of these notes and most definitions and theorems are borrowed from Chapter 11 of
Grinstead and Snell (1997)

1 Environment

All episodes start in the center state, C, and proceed either left or right by one state
on each step, with equal probability. Episodes terminate either on the extreme left or the
extreme right. When an episode terminates on the right a reward of +1 occurs; all other
rewards are zero.

1.1 Specifying a Markov Chain
We have a set of states, S = {s1, s2, . . . , sr}. The process starts in one of these states and
moves successively from one state to another. If the chain is currently in state si, then it
moves to state sj at the next step with a probability denoted by pij, and this probability does
not depend upon which states the chain was in before the current state. For the example
above S = {L,A,B,C,D,E,R}

1.2 Transition Matrix
From the above information we determine the transition probabilities. These are most
conveniently represented in a square array as

P =

L A B C D E R
L
A
B
C
D
E
R



1 0 0 0 0 0 0
.5 0 .5 0 0 0 0
0 .5 0 .5 0 0 0
0 0 .5 0 .5 0 0
0 0 0 .5 0 .5 0
0 0 0 0 .5 0 .5
0 0 0 0 0 0 1


The entries in the second row of the matrix P represent the probabilities for being in

various states following being in a state A.
We consider the question of determining the probability that, given the chain is in state

i today, it will be in state j two steps from now. We denote this probability by p(2)
ij . In the

example 6.2 we see that if you start in state A then the event that we end up in state C in
two steps is the disjoint union of seven events: 1) we transition into state L in the first step
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and state C in the second step, 2) we stay in state A during the first step and transition
into state C during the second step, 3) we transition into state B during first state and
transition from B into C during second step, ... For example the conditional probability
that we transition into state B during the first step given that we start in state A times the
conditional probability that we will transition into state C during the second step given that
we will start in state B. Using the transition matrix P is a product p23p34. Thus, we have

p
(2)
24 = p21p14 + p22p24 + p23p34 · · ·+ p27p74 = .25

In general, if a Markov chain has r states, then

p
(2)
ij =

r∑
k=1

pikpkj

Theorem 1. Let P be the transition matrix of a Markov chain. The ijth entry p(n)
ij of the

matrix Pn gives the probability that the Markov chain, starting in state si, will be in state sj

after n steps.

We now consider the long-term behavior of a Markov chain when it starts in a state chosen
by a probability distribution on the set of states. If u is a probability vector which represent
the initial state of a Markov chain, then we think of ith component of u as representing the
probability that the chain starts in state si.

Theorem 2. Let P be the transition matrix of a Markov chain and let u be the probability
vector which represents the starting distribution. Then the probability that the chain is in
state si after n steps is the ith entry in the vector

u(n) = uPn

Note that if we want to examine the behavior of the chain under the assumption that it
starts in a certain state si, we simply choose u to be the probability vector with ith entry
equal to 1 and all other entries equal to 0.

1.3 Absorbing Markov Chains
One special type of Markov chains are absorbing Markov chains.

Definition 3. A state si of a Markov chain is called absorbing if it is impossible to leave it
(i.e. pii = 1). A Markov chain is absorbing if it has at least one absorbing state, and from
every state it is possible to go to an absorbing state (not necessarily in one step).

In our example states L and R are absorbing.

Definition 4. In an absorbing Markov chain, a state which is not absorbing is called tran-
sient.

In our example the states A, B, C, D, and E are transient states, and from any of these
it is possible to reach the absorbing states L and R.
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Questions of interest: What is the probability that the process will eventually reach an
absorbing state? What is the probability that the process will end up in a given absorbing
state? On the average, how many times will the process be in each transient state?

1.3.1 Canonical Form

Consider an arbitrary absorbing Markov chain. Renumber the states so that the transient
states come first. If there are r absorbing states and t transient states, the transition matrix
will have the following canonical form

P =

TR. ABS.

TR.
ABS.

(
Q R
0 I

)
Here I is an r-by-r identity matrix, 0 is an r-by-t zero matrix, R is a nonzero t-by-r

matrix, and Q is an t-by-t matrix. The first t states are transient and the last r states are
absorbing.

In 1.2, we saw that the entry p(n)
ij of the matrix Pn is the probability of being in state

sj after n steps, when the chain is started in state si. A standard matrix algebra argument
shows that Pn is of the form

Pn =

TR. ABS.

TR.
ABS.

(
Qn ∗
0 I

)
where the asterisk ∗ stands for the t-by-r matrix in the upper right-hand corner of Pn.

(This sub-matrix can be written in terms of Q and R, but the expression is complicated
and is not needed at this time.) The form of Pn shows that the entries of Qn give the
probabilities for being in each of the transient states after n steps for each possible transient
starting state.

1.3.2 Probability of Absorption

Theorem 5. In an absorbing Markov chain, the probability that the process will be absorbed
is 1 (i.e., Qn → 0 as n→∞).

Proof. Proof relies on the fact that from each non absorbing state it is possible to reach an
absorbing state in finitely many steps, i.e. there exists m such that starting from sj the
probability that the process will not reach an absorbing state is pj < 1 hence as the number
of steps increases probabilities tend to 0.

1.3.3 The Fundamental Matrix

Theorem 6. For an absorbing Markov chain the matrix I−Q has an inverse N and
N = I + Q + Q2 + . . . . The ij-entry nij of the matrix N is the expected number of times
the chain is in state sj, given that it starts in state si. The initial sate is counted if i = j.
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Proof. Let (I−Q)x = 0; that is x = Qx. Then, iterating this we see that x = Qnx. Since
Qn → 0, we have xQn → 0, so x = 0. Thus (I−Q)−1 = N exists. Note that

(I−Q)(I + Q + Q2 + · · ·+ Qn) = I−Qn+1

Multiplying both sides by N gives

(I + Q + Q2 + · · ·+ Qn) = N(I−Qn+1)

Letting n tend to infinity we have

N = I + Q + Q2 + . . .

Let X(k) be a random variable which equals 1 if the chain is in state sj after k steps when
starting from state si, and equals 0 otherwise. Then we have

P (X(k) = 1) = q
(k)
ij

and

P (X(k) = 0) = 1− q(k)
ij

The expected number of times the chain is in state sj in the first n steps, given that it
starts in state si is

E(X(0) +X(1) + · · ·+X(n)) = q
(0)
ij + q

(1)
ij + · · ·+ q

(n)
ij

Letting n tend to infinity we have

E(X(0) +X(1) + · · ·+X(n)) = q
(0)
ij + q

(1)
ij + · · · = nij

Definition 7. For an absorbing Markov chain P, the matrix N = (I−Q)−1 is called the
fundamental matrix for P. The entry nij of N gives the expected number of times that the
process is in the transient state sj if it is started in the transient state si

Continuing without our example the transition matrix in canonical form is

P =

E A B C D L R
E
A
B
C
D
L
R



0 0 0 0 .5 0 .5
0 0 .5 0 0 .5 0
0 .5 0 .5 0 0 0
0 0 .5 0 .5 0 0
.5 0 0 .5 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


From this we see that the matrix Q is
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Q =

E A B C D
E
A
B
C
D


0 0 0 0 .5
0 0 .5 0 0
0 .5 0 .5 0
0 0 .5 0 .5
.5 0 0 .5 0


and

I−Q =

E A B C D
E
A
B
C
D


1 0 0 0 −.5
0 1 −.5 0 0
0 −.5 1 −.5 0
0 0 −.5 1 −.5
−.5 0 0 −.5 1


Computing (I−Q)−1, we find

N =

E A B C D
E
A
B
C
D


12

3
1
3

2
3 1 11

3
1
3 12

3 11
3 1 2

3
2
3 11

3 22
3 2 11

3
1 1 2 3 2
11

3
2
3 11

3 2 22
3


From the forth row of N we see that if we start in state C then the expected number of

visits to states E, A, B, and D are 1, 1, 2, and 2.

1.3.4 Time to Absorption

We now consider the question: Given that the chain starts in state si, what is the expected
number of steps before the chain is absorbed?

Theorem 8. Let ti be the expected number of steps before the chain is absorbed, given that
the chain starts in state si, and let t be the column vector whose ith entry is ti. Then

t = Nc

where c is a column vector whose entries are 1.

Proof. If we add all the entries in the ith row of N, we will have the expected number of
times in any of the transient states for a given starting state si, that is, the expected time
required before being absorbed. Thus ti, is the sum of the entries in the ith row of N . If we
write this statement in matrix form, we obtain the theorem
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1.3.5 Absorption Probabilities

Theorem 9. Let bij be the probability that an absorbing chain will be absorbed in the ab-
sorbing state sj if it starts in the transient state si. Let B be the matrix with entries bij.
Then B is a t-by-r matrix, and

B = NR

where N is the fundamental matrix and R is as in the canonical form.

Proof. We have

Bij =
∑

n

∑
k

q
(n)
ik rkj =

∑
k

∑
n

q
(n)
ik rkj =

∑
k

nikrkj = (NR)ij

In the example 6.2 we found that

N =


12

3
1
3

2
3 1 11

3
1
3 12

3 11
3 1 2

3
2
3 11

3 22
3 2 11

3
1 1 2 3 2
11

3
2
3 11

3 2 22
3


Hence,

t = Nc =


12

3
1
3

2
3 1 11

3
1
3 12

3 11
3 1 2

3
2
3 11

3 22
3 2 11

3
1 1 2 3 2
11

3
2
3 11

3 2 22
3




1
1
1
1
1

 =


5
5
8
9
8


Thus starting in states E, A, B, C, and D the expected times to absorption are 5, 5, 8,

9, and 8, respectively
From the canonical form,

R =

L R
E
A
B
C
D


0 .5
.5 0
0 0
0 0
0 0


Hence,
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B = NR =


12

3
1
3

2
3 1 11

3
1
3 12

3 11
3 1 2

3
2
3 11

3 22
3 2 11

3
1 1 2 3 2
11

3
2
3 11

3 2 22
3




0 .5
.5 0
0 0
0 0
0 0

 =

L R
E
A
B
C
D


.167 .833
.833 .167
.667 .333
.500 .500
.333 .667


Notice that matrix B can be though of as expected number of times states L and R are

visited when starting from the other states.

2 Rewards
We are now ready to introduce a reward structure on top of the Markov chain. In particular
example 6.2 specifies that when an episode terminates on the right a reward of +1 occurs.
Let U denote rewards for transitioning into a state:

U =

E
A
B
C
D
L
R



0
0
0
0
0
0
1


Also, because episodes terminate upon reaching L or R we can rewrite P without affecting

any prior derivations:

P =

E A B C D L R
E
A
B
C
D
L
R



0 0 0 0 .5 0 .5
0 0 .5 0 0 .5 0
0 .5 0 .5 0 0 0
0 0 .5 0 .5 0 0
.5 0 0 .5 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


From B and N we can construct a matrix that represents expected number of times each

state is visited when starting in any state:

T =
(

N B
0 I0

)
where I0 is the identity matrix of size equal to the number of absorbing states (i.e. you

only count visiting absorbing state once and then episode is terminated). Then value of each
state (which is the expected return from all returns) can be computed as follows:
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V = TU

which for our example is

V =

E
A
B
C
D
L
R



.833

.167

.333

.500

.667
0

1.00


If any rewards were to be assigned in transient states V would would be adjusted appro-

priately as long as there is no discounting. For example, suppose that additionally a reward
of 1 is received when visiting state C. Then

U1 =

E
A
B
C
D
L
R



0
0
0
1
0
0
1


and

V1 =

E
A
B
C
D
L
R



1.833
1.167
2.333
3.500
2.667

0
1.000


which is exactly V plus how many time you expect to visit state C starting from a given

state.

3 LSTD as model-based learning
If we know the model of the environment, that is we know true rewards U for each state and
transition probabilities P then we can figure out values of each state by solving a system of
Bellman equations as in equation (3) of Boyan (2002), as follows:

β = (I−P)−1U

Let us examine (I−P)−1 in more detail:
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P =
(

Q R
0 0

)
=⇒

(I−P)−1 =
[

(IQ −Q) −R
0 I0

]−1

=
[

(IQ −Q)−1 −(IQ −Q)−1(−R)I−1
0

0 I−1
0

]

where IQ is an identity matrix of the same size as Q. From derivations above we have
(IQ −Q)−1 = N and NR = B. And since that I−1

0 = I0 we have

(I−P)−1 =
[

N B
0 I0

]
= T

That is by computing (I−P)−1 we are implicitly computing expected number of visits to
each transient state and expected probabilities of being absorbed in each absorbing state.
Thus

β = (I−P)−1U = TU = V !
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