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Practice =⇒ Imperfect Representation

Task State State Policy Representation
Aliasing Space (Number of features)

Backgammon (T1992)
Job-shop scheduling (ZD1995)
Elevator dispatching (CB1996)
Acrobot control (S1996)
Dynamic channel allocation (SB1997)
Active guidance of finless rocket (GM2003)
Robot sensing strategy (KF2004)
Helicopter control (NKJS2004)
Adaptive job routing/scheduling (WS2004)
Robot soccer keepaway (SSK2005)
Robot obstacle negotiation (LSYSN2006)
Tetris (SL2006)
Optimized trade execution (NFK2007)
9 × 9 Go (SSM2007)
Autonomic resource allocation (TJDB2007)
General game playing (FB2008)
Soccer opponent “hassling” (GRT2009)
Adaptive epilepsy treatment (GVAP2008)
Computer memory scheduling (IMMC2008)
Motor skills (PS2008)
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Practice =⇒ Imperfect Representation

Task State State Policy Representation
Aliasing Space (Number of features)

Backgammon (T1992) Absent Discrete Neural network (198)
Job-shop scheduling (ZD1995) Absent Discrete Neural network (20)
Elevator dispatching (CB1996) Present Continuous Neural network (46)
Acrobot control (S1996) Absent Continuous Tile coding (4)
Dynamic channel allocation (SB1997) Absent Discrete Linear (100’s)
Active guidance of finless rocket (GM2003) Present Continuous Neural network (14)
Robot sensing strategy (KF2004) Present Continuous Linear (36)
Helicopter control (NKJS2004) Present Continuous Neural network (10)
Adaptive job routing/scheduling (WS2004) Present Discrete Tabular (4)
Robot soccer keepaway (SSK2005) Present Continuous Tile coding (13)
Robot obstacle negotiation (LSYSN2006) Present Continuous Linear (10)
Tetris (SL2006) Absent Discrete Linear (22)
Optimized trade execution (NFK2007) Present Discrete Tabular (2-5)
9 × 9 Go (SSM2007) Absent Discrete Linear (≈1.5 million)
Autonomic resource allocation (TJDB2007) Present Continuous Neural network (2)
General game playing (FB2008) Absent Discrete Tabular (part of state space)
Soccer opponent “hassling” (GRT2009) Present Continuous Neural network (9)
Adaptive epilepsy treatment (GVAP2008) Present Continuous Extremely rand. trees (114)
Computer memory scheduling (IMMC2008) Absent Discrete Tile coding (6)
Motor skills (PS2008) Present Continuous Motor primitive coeff. (100’s)
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Perfect representations (fully observable, enumerable states) are impractical.
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Introspection and Direction

To learn

Finite MDP
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To learn
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State Aliasing

Generalization

To apply To learn

Thesis Question :

“How well do different reinforcement learning methods perform in the presence of
state aliasing and function approximation; is it possible to develop methods that are
both sample efficient and capable of achieving high asymptotic performance in their
presence?”
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Dissertation

Stage 1: Determine which learning methods suit which problems.

- Parameterized learning problem:

∗ s (Size of state space)
∗ p (Stochasticity in transitions)
∗ χ (“Expressiveness” of function approximator)
∗ w (Generalization width)
∗ σ (State noise)

- Sarsa ∼ VF; CMA-ES ∼ PS.

Stage 2: Integrate strengths of different learning methods.
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Parameterized Learning Problem: Merits

1. The designed task and learning framework are easy to understand and can be
controlled precisely.

2. We may examine the effect of subsets of problem parameters while keeping
others fixed.

3. We can benchmark learned policies against optimal behavior.

4. The learning process can be executed in a relatively short duration of time,
thereby facilitating extensive experimentation.
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Problem Size and Stochasticity
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Figure: (a) Example of parameterized MDP example with s = 7; the number of non-terminal
states is 36. (b) Rewards obtained at “next states” of transitions. (c) Optimal action values from
each state when p = 0.1. (d) Corresponding optimal policy.
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State Aliasing
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Figure: An implementation of state aliasing in the example MDP from Figure 1. (a) Variables dx
and dy (themselves generated randomly based on parameter σ) define a rectangle with the true
state at a corner; cells within this rectangle are picked uniformly at random to constitute observed
states. (b) A trajectory of true states 1 through 9, and the set of all possible observed states that
could be encountered during this trajectory when dx = −2 and dy = 1. (c) For the same
trajectory, the set of possible observed states when dx = 1 and dy = 0.
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Generalization
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Figure: Generalization scheme in example MDP from Figure 1. (a) A randomly chosen subset of
cells (numbered 1 through 9) are the centers of overlapping tiles (giving χ = 9

36 = 0.25). The tile
width w is set to 3; tiles 1, 2, 5, and 9 are shown outlined (and clipped at the boundaries of the
non-terminal region). (b) Table showing coefficients associated with each tile for actions N and E.
(c) The activation value of each cell for an action is the sum of the weights of the tiles to which it
belongs. The figure shows the higher activation value (among N and E) for each cell. (d) Arrows
mark a policy that is greedy with respect to the activations: that is, in each cell, the action with a
higher activation value is chosen.
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Parameters of Learning Problem

Table: Summary of learning problem parameters. The last column shows the ranges over which
each parameter is valid and meaningful to test.

Parameter Property of: Controls: Range

s Task Size of state space {2, 3, . . . ,∞}

p Task Stochasticity of
[0, 0.5)transitions

σ
Agent/task State aliasing [0,∞)interface

χ Agent Expressiveness of
(0, 1]generalization scheme

w Agent Width of
{1, 3, . . . , 2s − 3}generalization
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On-line Value Function-based (VF) Methods

Sarsa(λ)

ExpSarsa(λ)

Q-learning(λ)

Table: Summary of parameters used by methods within VF. The last column shows the ranges
over which we tune each parameter.

Parameter Controls: Range

λ Eligibility traces [0, 1]

α0 Initial learning rate [0.1, 1]

ǫ0 Initial exploration rate [0.1, 1]

θ0 Initial weights [−10.0, 10.0]
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Policy Search (PS) Methods

Cross-entropy Method (CEM)

Covariance Matrix Adapation Evolutionary Strategy (CMA-ES)

Genetic Algorithm (GA)

Random Weight Guessing (RWG)

Table: Summary of parameters used by methods from PS. The last column shows the ranges over
which we tune each parameter. The range shown for #trials is used when the total number of
episodes is 50,000, as in a majority of our experiments. The range is scaled proportionately with
the total number of training episodes. Under RWG, #trials is the only method-specific parameter.

Parameter Controls: Range

#trials Samples per fitness evaluation [25, 250]

#gens Generations [5, 50]
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Method-specific Parameter Search

p1

p2

(a) Stage 1

p1

p2

(b) Stage 2

p1

p2

(c) Stage 3

p1

p2

p1 p2( , )* *

(d) Final solution

Shivaram Kalyanakrishnan and Peter Stone (2011) 12 / 25



Effect of θ0 on VF
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(f) χ = 1, w = 5.
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Figure: [s = 10, p = 0.2, σ = 0.] Plots showing the effect of the initial weights θ0 on the
performance of on-line value function-based methods. Note the irregular spacing of points on the
x axis. Plot (a) corresponds to an exact tabular representation with no generalization.
Generalization is introduced in (b) by increasing w ; additionally the expressiveness χ is reduced
in (c).

Shivaram Kalyanakrishnan and Peter Stone (2011) 13 / 25



Three Test Problem Instances

Table: Parameter settings for illustrative problem instances I1, I2, and I3.

Problem instance s p χ w σ

I1 10 0.2 1 1 0

I2 10 0.2 0.5 7 0

I3 10 0.2 1 1 4
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VF Representative
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Figure: Comparison of the performance of different VF methods on the three problem instances
from Table 4. Under each instance, and for each of the methods—Sarsa, Q-learning, and
ExpSarsa—a systematic search identifies the method-specific parameter settings (α0, ǫ0, θ0, and
λ) yielding the highest performance after 50,000 episodes of training. The methods are marked
“∗” as they are run under these optimized parameter settings.
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PS Representative
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Figure: Comparison of the performance of different PS methods on the three problem instances
from Table 4. Methods are marked “∗” to denote that method-specific parameters—#trials and
#gens (except #gens for RWG)—have been optimized for each task instance.
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Setting U: Number of Training Episodes
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Figure: Performance of different learning methods as the number of training episodes U is varied.
Each plot corresponds to a problem instance from Table 4. Note the irregular spacing of points on
the x axis. At each point, the best performance achieved by three learning methods from VF
(Sarsa∗, Q-learning∗, and ExpSarsa∗) and two from PS (CEM∗, CMA-ES∗) is shown (key
specified in plot (a)).
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Effect of Problem Size and Stochasticity
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Effect of State Aliasing
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Effect of Expressiveness of Generalization Scheme
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Figure: [s = 10, p = 0.2, w = 5, σ = 0.] Plots (a) and (b) show learning curves of Sarsa(λ)∗ and
CMA-ES∗ at different values of χ. Plot (c) shows the performance achieved after 50,000 episodes
of training at different values of χ.
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Effect of Generalization Width
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(a) U = 50,000
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(b) U = 500,000
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Figure: [s = 10, p = 0.2, χ = 1, σ = 2.] Performance of Sarsa∗ and CMA-ES∗ at different values
of w , optimized for (a) 50,000, (b) 500,000, and (c) 5,000,000 training episodes.
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Effect of Generalization Width: Pattern
Normalized performance
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Summary and Discussion

1. Parameterized learning problems: ideal methodology for future research.

2. Different horses (learning methods) for different courses (representations).

3. Generalization and optimistic initialization.

4. Automatic parameter tuning.

5. Integrate learning and representation discovery.
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Retreat Presentation

1. provide a big picture motivation of the area

2. give a clear statement of the main objective

3. give an overview of important related work in the field

4. describe the key technical challenges

5. comment on the potential impact of solving them.

Shivaram Kalyanakrishnan and Peter Stone (2011) 24 / 25



Thank You!
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