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Heating,  
Ventilation, and 
Air-conditioning 
(HVAC) systems 



Heat-Pump based HVAC System 

• Part of the efforts of moving to sustainable energy 
 

• Heat-pump is widely used and highly efficient 

– Consumes renewable energy (electricity)  
rather than gas/oil 

– Its heat output is up to 3x-4x the energy it consumes 

– But: no longer effective in freezing outdoor  
temperatures 
 

• Backed up by an auxiliary heater 

– Resistive heat coil 

– Unaffected by outdoor temperatures 

– But: consumes 2x the energy consumed by the heat-pump heater 
 

• Heat pump is also used for cooling 

+ 



Thermostat – an HVAC System’s Decision Maker 

• The thermostat : 
– Controls Comfort 

– Significantly affects energy consumption 
 

• Current interest evident from companies like  NEST, 
BuildingIQ 
 

 



Goal:  
Minimize energy consumption while satisfying comfort requirements 

 

 

www.dot.gov 



Contributions: 

1. A complete reinforcement learning agent  that learns and applies 
a new, adaptive control strategy for a heat-pump thermostat 
 

2. Our agent achieves 7.0%-14.5% yearly energy savings 

Goal:  
Minimize energy consumption while satisfying comfort requirements 

www.dot.gov 



Simulation Environment 

• GridLAB-D:  A realistic smart-grid simulator, simulates power 
generation, loads and markets 

• Open-source software, developed for the U.S. DOE, simulates 
seconds to years 

• Realistically models a residential home 
– Heat gains and losses, thermal mass, solar radiation and weather 

effects, uses real weather data recorded by NREL (www.nrel.gov) 

GridLAB-D 
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Problem Setup 

• Simulating  a typical residential home 

 

 

• Goal: minimize energy consumed by the HVAC, while 
satisfying the following comfort spec: 

 
 

     Occupants are  
– 12am-7am: At home. 

– 7am-6pm:  Not at home.  
(the ”don’t care” period) 

– 6pm-12am: At home. 



The Default Thermostat 



The Default Thermostat 
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The Default Thermostat 



Can We Just Shut-Down The Thermostat During 
“don’t-care” Period? 

• Effective way to save energy 
– Indoor temp. closer to outdoor           heat dissipation slows down 

 

• Simulating it… 

 

 

 

 

• In this case, the result is: 
– Increased energy consumption  

– Failure to satisfy the comfort spec 
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Therefore, people frequently prefer to 
leave the thermostat open all day 



Can We Shut-Down The Thermostat During 
“don’t-care” Period? 

• Effective way to save energy 
– Indoor temp. closer to outdoor           heat dissipation slows down 

 

• Simulating it… 

 

 

 

 

• In this case, the result is: 
– Increased energy consumption  

– Failure to satisfy the comfort spec 

 

Therefore, people frequently prefer to 
leave the thermostat open all day 

However, a smarter shut-down should 
still be able to save energy 



From the US Dept. of Energy’s website 



Challenges 

  

Desired behavior: 
– Maximize shut-down time while staying above the heat-pump slope 
– Similarly for cooling (no AUX) 

 
Challenges: 
• The heat-pump slope:  

– Is unknown in advance 
– Changes every day 
– Depends on future weather 
– Depends on specific house characteristics 

• Action effects are: 
– Drifting rather than constant: since heat is being moved rather than generated, heat 

output strongly depends on the temperatures indoors, outdoors and along the heat path 
– Noisy due to hidden physical conditions 
– Delayed due to heat capacitors like walls and furniture 

• Also, in a realistic deployment: 
– Exploration cannot be too long  or too aggressive 
– Customer acceptance will probably depend on worst-case behavior 

• Making decisions in continuous, high dimensional space 
 



Our Problem as a Markov Decision Process (MDP) 

• States: 
 

• Actions: 
                

 

• Transition: 
 

• Reward: 
  

 

• Terminal States: 
        
 

•  Action is taken every 6 minutes  
– Modeling a realistic lockout of the system 
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Our Problem as a Markov Decision Process (MDP) 

• States: ??? 
 

• Actions: {COOL, OFF, HEAT, AUX} 
                       1    :    0   :    2     :   4         consumption (ea) proportion 

 

• Transition: 
 

• Reward: – ea  – 100000 Δ2
6pm            where: 

Δ2
6pm  := (indoor_temp_at_6pm – required_indoor_temp_at_6pm) 

 

• Terminal States: 
        
 

•  Action is taken every 6 minutes  
– Modeling a realistic lockout of the system 

  



How Should We Model State? 

• Choosing a state representation is an important design 
decision. A state variable: 
– captures what we need to know about the system at a given moment 

– is the variable around which we construct value function 
approximations 
[Powell 2011] 
 

• Definition 5.4.1 from [Powell 2011]: 
– A state variable is the minimally dimensioned function of history that 

is necessary and sufficient to compute the decision function, the 
transition function, and the contribution function. 
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Expanding State to Compute the 
Transition Function 

 

• Can we predict action effects for each of the state variables? 

 

• Current state representation: <Tin, Time, ea> 

 

• Need to be able to predict Tin and ea  

 

• Method: generate simulated data, use cross-validation to test 
for regression prediction accuracy 



Predicting Tin 

• Prediction error is unacceptably high – state <Tin, Time, ea> doesn’t 
capture enough information 
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Predicting Tin 

• Prediction error is unacceptably high – state <Tin, Time, ea> doesn’t 
capture enough information 

• Add Tout – directly affects Tin . Prediction error still unacceptably high 

• Noise explained as hidden home state        add history of observable 
information 

– Previous action 

– Measured Tin history of 10 temperatures: <t0, t1, t2, …, t9> 

– Resulting state:  <Tin, Tout, Time, ea, prevAction, t0, …,t9> 

 



Completing the state definition 

• Resulting state: <Tin, Tout, Time, ea, prevAction, t0, …,t9 > 

• Can we predict the newly added variables? 

• Trivially, except for Tout 

• Therefore, add weatherForecast to state 

• weatherForecast doesn’t need to be predicted in our 
transition function 

• This completes our state definition 

• The final resulting state is: 
<Tin, Tout, Time, ea, prevAction, t0, …,t9, weatherForecast> 



Our Problem as a Markov Decision Process (MDP) 

• States: <Tin, Tout, Time, ea, prevAction, t0, …,t9, weatherForecast> 
 

• Actions: {COOL, OFF, HEAT, AUX} 
                       1    :    0   :    2     :   4         consumption (ea) proportion 

 

• Transition: unknown in advance       learned 
 

• Reward: – ea  – 100000 Δ2
6pm            where: 

Δ2
6pm  := (indoor_temp_at_6pm – required_indoor_temp_at_6pm) 

 

• Terminal States: {s | s.time = 11:59pm} 
        
 

•  Action taken every 6 minutes  
– Modeling a realistic lockout of the system 

• State space is continuous and high dimensional 



Agent Operation 

Choose Best Action 
(TreeSearch) 

Observe Resulting 
State 

Record Action 
Effect: <s,a,s’> 

If Midnight? 
Update House 

Model From data 
(regression)  

Choose 
Random 
Action 

Observe 
Resulting 

State 

Record Action 
Effect: <s,a,s’> 

First 3 days: 
exploration 

Starting day 4: 
energy-saving  
setback policy 
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Exploration 

• Random actions for 3 days 

 

• Could use more advanced exploration policy 

 

• However, this is still a realistic setup 

 



Exploration 

• Random actions for 3 days 

 

• Could use more advanced exploration policy 

 

• However, this is still a realistic setup 

– For instance when occupants are traveling during the weekend 

 



Agent Operation 

Choose Best Action 
(TreeSearch) 

Observe Resulting 
State 

Record Action 
Effect: <s,a,s’> 

If Midnight? 
Update House 

Model From data 
(regression)  

Choose 
Random 
Action 

Observe 
Resulting 

State 

Record Action 
Effect: <s,a,s’> 

First 3 days: 
exploration 

Starting day 4: 
energy-saving  
setback policy 



Update House Model from Data 

• Every midnight, use all the recorded data <s, a, s’> to estimate 
the house’s transition function 
 

• Linear Regression to estimate <s,a>       s’ 



Agent Operation 

Choose Best Action 
(TreeSearch) 

Observe Resulting 
State 

Record Action 
Effect: <s,a,s’> 
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Action 

Observe 
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Record Action 
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First 3 days: 
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Starting day 4: 
energy-saving  
setback policy 



Choosing the Best Action 

• Dealing with continuous high-dimensional state  

• Impractical to compute a value function 

•         Run a tree search at every step 

• Choose the first action of the best search as the next action 
 
 



Safety Buffer in a Tree Search 

C ~ 0 

C ~ 2σ 



Results 

• Simulate 1 year under different weather conditions 

• 21 residential homes of sizes 1000-4000 ft2  

• Using real data weather recorded in 

             NYC                                   Boston                           Chicago 

 
 
 

 

• Why cold cities? Since heating consumes 2x-4x more energy 



Temperature Graphs – Learned Setback Policy 



Energy Savings 



Comfort Performance 

• In more than 22,000 simulated days 



Ablation Analysis 

 

 

 

• Removing features and their combinations 
– State features: 

• prevAct: previousAction 

• Hist: temperature history t0, …, t9 

– conf: confidence buffer  
 

• Setting other values to the confidence bound 



Related Work 

• [Rogers et al. 2011] – adaptive thermostat that tries to minimize price & peak 
demand rather than the total amount of energy.  

 

 

• [Hafner and Riedmiller 2011; Kretchmar 2000] – use RL inside an HVAC systems, 
but for tuning the system itself. 

 

• [T. Peffer et al. 2011] – How people use thermostats in homes 

 

• [Powell 2011] – Approximate Dynamic Programming 

 

• Learning thermostats 
– Commercial  companies: NEST, more… 

– Do not publish the algorithms used 



Summary 

• A complete, adaptive, RL agent  
for controlling a heat-pump thermostat 

• Achieves 7%-14.5% yearly energy savings in simulation,  
while satisfying comfort requirements 

• Techniques: 
– Carefully defined the problem as an MDP  

– Carefully chose a state representation 

– Using an efficient, specialized tree-search 

• Experiments run on a range of homes  
and weather conditions 

 

+ 

+ + 

Thank you! 


