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Heat-Pump based HVAC System

Part of the efforts of moving to sustainable energy

Heat-pump is widely used and highly efficient

— Consumes renewable energy (electricity)
rather than gas/oil

— Its heat output is up to 3x-4x the energy it consumes

— But: no longer effective in freezing outdoor
temperatures

Backed up by an auxiliary heater

— Resistive heat coil
— Unaffected by outdoor temperatures
— But: consumes 2x the energy consumed by the heat-pump heater

Heat pump is also used for cooling



Thermostat — an HVAC System’s Decision Maker

 The thermostat :
— Controls Comfort
— Significantly affects energy consumption

* Current interest evident from companies like NEST,
BuildinglQ

This is the
£ "iPod" of
thermostats



Goal:

Minimize energy consumption while satisfying comfort requirements

www.dot.gov




Goal:

Minimize energy consumption while satisfying comfort requirements

Contributions:
1. A complete reinforcement learning agent that learns and applies
a new, adaptive control strategy for a heat-pump thermostat

2. Our agent achieves 7.0%-14.5% yearly energy savings

www.dot.gov




Simulation Environment

GridLAB-D: A realistic smart-grid simulator, simulates power
generation, loads and markets

Open-source software, developed for the U.S. DOE, simulates
seconds to years

Realistically models a residential home

— Heat gains and losses, thermal mass, solar radiation and weather
effects, uses real weather data recorded by NREL (www.nrel.gov)




Problem Setup

 Simulating a typical residential home

* Goal: minimize energy consumed by the HVAC, while
satisfying the following comfort spec:

Occupants are
— 12am-7am: At home.

— 7am-6pm: Not at home.
(the “don’t care” period)

— 6pm-12am: At home.
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The Default Thermostat
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The Default Thermostat
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The Default Thermostat
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Can We Just Shut-Down The Thermostat During
“don’t-care” Period?

* Effective way to save energy

— Indoor temp. closer to outdoor == heat dissipation slows down

e Simulating it...

* In this case, the result is:
— Increased energy consumption
— Failure to satisfy the comfort spec
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Therefore, people frequently prefer to
leave the thermostat open all day




Can We Shut-Down The Thermostat During
“don’t-care” Period?

Effective way to save energy

— Indoor temp. closer to outdoor == heat dissipation slows down

e Simulating it...

| oFF AUX-HEAT |

In this case, the result is:

— Increased energy consumption
— Failure to satisfy the comfort spec

Therefore, people frequently prefer to
leave the thermostat open all day

However, a smarter shut-down should
still be able to save energy




From the US Dept. of Energy’s website
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HEAT PUMP TIPS '
® Do not set back the heat pump's thermostat manually if it causes the electric-resistance heating
to come on. This type of heating, which is often used as a backup to the heat pump, is more
EXpENSiVE.

s |nstall or have a professional install a programmable thermostat with multistage functions

m

suitable for a heat pump. _—
ey

® Clean or change filters once a month or as needed, and maintain the
manufacturer's instructions. @ Thermostats and Control Systems | DEF'E---I + l
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LIMITATIONS FOR HOMES WITH HEAT PUMPS, ELECTRIC RESISTANCE
HEATING, STEAM HEAT, AND RADIANT FLOOR HEATING

Programmable thermostats are generally not recommended for heat pumps. In its cooling mode, a El
heat pump operates like an air conditioner, so turning up the thermostat (either manually or with a
programmable thermostat) will save energy and money. But when a heat pump is in its heating
mode, setting back its thermostat can cause the unit to operate inefficiently, thereby canceling out
any savings achieved by lowering the temperature setting. Maintaining a moderate setting is the
most cost-effective practice. Recently, however, some companies have begun selling specially
designed programmable thermostats for heat pumps, which make setting back the thermostat
cost-effective. These thermostats typically use special algorithms to minimize the use of backup

electric resistance heat systems. e
—




Challenges

Desired behavior:

Challenges: .

— Maximize shut-down time while staying above the heat-pump slope
— Similarly for cooling (no AUX)

The heat-pump slope: . I
— Is unknown in advance
— Changes every day w0 | Hear
— Depends on future weather

— Depends on specific house characteristics

60 m,
Au

Action effects are:

— Drifting rather than constant: since heat is being moved rather than generated, heat
output strongly depends on the temperatures indoors, outdoors and along the heat path

— Noisy due to hidden physical conditions
— Delayed due to heat capacitors like walls and furniture
Also, in a realistic deployment:
— Exploration cannot be too long or too aggressive
— Customer acceptance will probably depend on worst-case behavior

Making decisions in continuous, high dimensional space



Our Problem as a Markov Decision Process (MDP)

States:

Actions:

Transition:

Reward:

Terminal States:

Action is taken every 6 minutes
— Modeling a realistic lockout of the system
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How Should We Model State?

* Choosing a state representation is an important design
decision. A state variable:
— captures what we need to know about the system at a given moment

— is the variable around which we construct value function
approximations
[Powell 2011]

* Definition 5.4.1 from [Powell 2011]:

— A state variable is the minimally dimensioned function of history that
is necessary and sufficient to compute the decision function, the
transition function, and the contribution function.



Our Problem as a Markov Decision Process (MDP)

States: <T.

In’

Time, e_>

N

Actions: {COOI, OFF, HEAT, AUX}
1 ] 0: 2 : 4 &= consumption (e,) proportion

Transition:

Reward: — e, — 100000 A2 where:

AZ

6pm

spm = (indoor_temp_at_6pm — required_indoor_temp_at_6pm)
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— Modeling a realistic lockout of the system
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Expanding State to Compute the
Transition Function

Can we predict action effects for each of the state variables?

Current state representation: <T, , Time, e_>

In’

Need to be able to predict T, , and e,

Method: generate simulated data, use cross-validation to test
for regression prediction accuracy



Predicting T,

* Prediction error is unacceptably high — state <T. , Time, e_> doesn’t
capture enough information
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Predicting T,

Prediction error is unacceptably high —state <T, , Time, e_> doesn’t
capture enough information

Add T, — directly affects T, . Prediction error still unacceptably high
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information
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Prediction error is unacceptably high —state <T, , Time, e_> doesn’t
capture enough information

Add T, — directly affects T, . Prediction error still unacceptably high

Noise explained as hidden home state m=) add history of observable
information

— Previous action
— Measured T, history of 10 temperatures: <t,>
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Prediction error is unacceptably high —state <T, , Time, e_> doesn’t
capture enough information

Add T, — directly affects T, . Prediction error still unacceptably high

Noise explained as hidden home state m=) add history of observable
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— Previous action
— Measured T, history of 10 temperatures: <t,, t,>
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Predicting T,

Prediction error is unacceptably high — state <T,

., Time, e_>doesn’t
capture enough information
Add T, — directly affects T, . Prediction error still unacceptably high

Noise explained as hidden home state m=) add history of observable
information

— Previous action
— Measured T, history of 10 temperatures: <t,, t,, t,>
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Predicting T,

Prediction error is unacceptably high — state <T,

., Time, e_>doesn’t
capture enough information
Add T, — directly affects T, . Prediction error still unacceptably high

Noise explained as hidden home state m=) add history of observable
information

— Previous action
— Measured T, history of 10 temperatures: <t,, t;, t,, ..., ts>
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Predicting T,

Prediction error is unacceptably high —state <T, , Time, e_> doesn’t
capture enough information

Add T, — directly affects T, . Prediction error still unacceptably high

Noise explained as hidden home state m=) add history of observable
information

— Previous action

— Measured T, history of 10 temperatures: <t,, t;, t,, ..., ts>

— Resulting state: <T., T ., Time, e,, prevAction, t,, ...,ty>
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Completing the state definition

Resulting state: <T., T_ ., Time, e_, prevAction, t,, ...ty >
Can we predict the newly added variables?

Trivially, except for T,

Therefore, add weatherForecast to state

weatherForecast doesn’t need to be predicted in our
transition function

This completes our state definition

The final resulting state is:
<T.., T,, Time, e, prevAction, t,, o weatherForecast>

in” “out’



Our Problem as a Markov Decision Process (MDP)

States: <T., T, Time, e_, prevAction, t,, ...,t;, weatherForecast>

in? "out’

Actions: {COOL, OFF, HEAT, AUX}
1 : 0 : 2 : 4 &= consumption (e,) proportion

Transition: unknown in advance = |earned

Reward: — e, — 100000 A? where:

AZ

6pm

spm = (indoor_temp_at_6pm — required_indoor_temp_at_6pm)

Terminal States: {s | s.time = 11:59pm}

Action taken every 6 minutes
— Modeling a realistic lockout of the system

State space is continuous and high dimensional



Agent Operation

First 3 days: Starting day 4:
exploration energy-saving
setback policy

Choose Best Action
(TreeSearch)

Choose
Random
Action

If Midnight?
Update House
Model From data
(regression)

Observe

Resulting Record Action Observe Resulting
State Effect: <s,a,s’> State

Record Action
Effect: <s,a,s’>
.

\
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Exploration

 Random actions for 3 days
* Could use more advanced exploration policy

* However, this is still a realistic setup



Exploration

Random actions for 3 days
Could use more advanced exploration policy

However, this is still a realistic setup
— For instance when occupants are traveling during the weekend




Agent Operation

First 3 days: Starting day 4:
exploration energy-saving
setback policy

Choose Best Action
(TreeSearch)

Choose
Random
Action

\

If Midnight?
Update House
Model From data
(regression)

Observe

Resulting Record Action Observe Resulting
State Effect: <s,a,s’> State

Record Action
Effect: <s,a,s’>
.

\




Update House Model from Data

* Every midnight, use all the recorded data <s, a, s’> to estimate
the house’s transition function

* Linear Regression to estimate <s,a> — s’



Agent Operation

First 3 days: Starting day 4:
exploration energy-saving
setback policy

Choose Best Action
(TreeSearch)

Choose
Random
Action

\

If Midnight?
Update House
Model From data
(regression)

Observe

Resulting Record Action Observe Resulting
State Effect: <s,a,s’> State

Record Action
Effect: <s,a,s’>
.

\




Choosing the Best Action

Dealing with continuous high-dimensional state

Impractical to compute a value function

==) Run a tree search at every step

Choose the first action of the best search as the next action




Safety Buffer in a Tree Search
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Results

e Simulate 1 year under different weather conditions
* 21 residential homes of sizes 1000-4000 ft?

* Using real data weather recorded in
NYC Boston Chicago

 Why cold cities? Since heating consumes 2x-4x more energy



Temperature Graphs — Learned Setback Policy
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Energy Savings

Including Exploration Days

Including Exploration Days
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Comfort Performance

* |[n more than 22,000 simulated days

Temperatures at 6PM
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Ablation Analysis

Table 1: Ablation Analysis

| Analysis Type | Energy Consumption (kWh) | Comfort Violations (#) | Range of 6pm Temp. ]
prevAct+hist+ conf 1112(4+9.5%) 232 60.1-84.4
prevAct+hist 1070(+5.4%) 193 60.8-80.9
Removed Feature conf 1024(+0.8%) 138 67.5-78.3
hist 1016(+0.0%) 133 67.1-77.7
prevAct 1015(+0.0%) 65 67.8-7T6.5
20 1090(+7.3%) 29 69.0-78.5
Other conf. bounds — 1039(+2.3%) 5= 69 0-77 S
| Final Agent | 1015 \ 23 | 68.8-76.6

* Removing features and their combinations

— State features:

* prevAct: previousAction
* Hist: temperature history t, ..., tq

— conf: confidence buffer

e Setting other values to the confidence bound



Related Work

[Rogers et al. 2011] — adaptive thermostat that tries to minimize price & peak
demand rather than the total amount of energy.

[Hafner and Riedmiller 2011; Kretchmar 2000] — use RL inside an HVAC systemes,
but for tuning the system itself.

[T. Peffer et al. 2011] — How people use thermostats in homes
[Powell 2011] — Approximate Dynamic Programming

Learning thermostats
— Commercial companies: NEST, more...
— Do not publish the algorithms used



Summary

A complete, adaptive, RL agent
for controlling a heat-pump thermostat

Excluding Explor ration Days Temperatures at 6PM
1500,

Achieves 7%-14.5% yearly energy savings in simulation,
while satisfying comfort requirements

Energy savings (%)
3 &
K]

Techniques:
— Carefully defined the problem as an MDP

Gross-Valldation Eror
o -
o - P

— Carefully chose a state representation

— Using an efficient, specialized tree-search
Experiments run on a range of homes
and weather conditions

Thank you!




