CS394R
Reinforcement Learning: Theory and Practice

Peter Stone

Department of Computer Science
The University of Texas at Austin
Good Morning Colleagues
Good Morning Colleagues

- Are there any questions?
Good Morning Colleagues

- Are there any questions?
Logistics

• Responses
Logistics

- Responses
 - All were good
Logistics

• Responses
 – All were good
 – Especially if you summarize, it’s helpful if you flag your questions clearly - especially most “important” ones.
Logistics

- Responses
 - All were good
 - Especially if you summarize, it’s helpful if you flag your questions clearly - especially most “important” ones.
 - Won’t always be able to answer
Logistics

• Responses
 – All were good
 – Especially if you summarize, it’s helpful if you flag your questions clearly - especially most “important” ones.
 – Won’t always be able to answer
 – Also bring them up in class.
Logistics

- Responses
 - All were good
 - Especially if you summarize, it’s helpful if you flag your questions clearly - especially most “important” ones.
 - Won’t always be able to answer
 - Also bring them up in class.
 - Look for programming assignment opportunities!
Logistics

- Responses
 - All were good
 - Especially if you summarize, it’s helpful if you flag your questions clearly - especially most “important” ones.
 - Won’t always be able to answer
 - Also bring them up in class.
 - Look for programming assignment opportunities!
 - OK to reproduce graphs, but then explore variations
Logistics

• Responses

 – All were good
 – Especially if you summarize, it’s helpful if you flag your questions clearly - especially most “important” ones.
 – Won’t always be able to answer
 – Also bring them up in class.

 – Look for programming assignment opportunities!
 – OK to reproduce graphs, but then explore variations
 – First example: Wesley Tansey on self-play TTT
Logistics

● Responses
 – All were good
 – Especially if you summarize, it’s helpful if you flag your questions clearly - especially most “important” ones.
 – Won’t always be able to answer
 – Also bring them up in class.
 – Look for programming assignment opportunities!
 – OK to reproduce graphs, but then explore variations
 – First example: Wesley Tansey on self-play TTT
 – Need a volunteer to present next week.
Let’s Play!
Let’s Play!

- I’m a 2-armed bandit
Let’s Play!

- I’m a 2-armed bandit
- As a class, you choose which arm: 3 times around.
Let’s Play!

• I’m a 2-armed bandit
• As a class, you choose which arm: 3 times around.
• Maximize your payoff.
Let’s Play!

- I’m a 2-armed bandit
- As a class, you choose which arm: 3 times around.
- Maximize your payoff.
- The answer:
Let’s Play!

- I’m a 2-armed bandit
- As a class, you choose which arm: 3 times around.
- Maximize your payoff.
- The answer:

```lisp
(defun l () (+ 5 (random 7)))
(defun r ()
    (let ((x (random 3)))
        (case x
            (0 20)
            (1 0)
            (2 (+ 7 (random 11)))
        )))
```

- What about minimizing risk?
N-armed bandit in practice?
N-armed bandit in practice?

- Choosing mechanics
- Choosing a barber/hairdresser
Student-led Discussion

- Elad Liebman on how to judge policy performance
What’s Happened Since?

• Interval estimation
What’s Happened Since?

- Interval estimation
- Shivaram’s slides
Chapter 3

- Defines the problem
Chapter 3

• Defines the problem

• Introduces some important notation and concepts.
Chapter 3

• Defines the problem

• Introduces some important notation and concepts.
 – Returns
 – Markov property
 – State/action value functions
 – Bellman equations
Chapter 3

- Defines the problem

- Introduces some important notation and concepts.
 - Returns
 - Markov property
 - State/action value functions
 - Bellman equations
 - Get comfortable with them!
Chapter 3

● Defines the problem

● Introduces some important notation and concepts.
 – Returns
 – Markov property
 – State/action value functions
 – Bellman equations
 – Get comfortable with them!

● Solution methods come next
Chapter 3

- Defines the problem
- Introduces some important notation and concepts.
 - Returns
 - Markov property
 - State/action value functions
 - Bellman equations
 - Get comfortable with them!
- Solution methods come next
 - What does it mean to solve an RL problem?
Formulating the RL problem

- Art more than science
- States, actions, rewards
- Rewards: no hints on how to solve the problem
Formulating the RL problem

• Art more than science

• States, actions, rewards

• Rewards: no hints on how to solve the problem
 – Dependent on next state (p. 66)
Formulating the RL problem

- Art more than science
- States, actions, rewards
- Rewards: no hints on how to solve the problem
 - Dependent on next state (p. 66)
- Discounted vs. non-discounted
Formulating the RL problem

- Art more than science
- States, actions, rewards
- Rewards: no hints on how to solve the problem
 - Dependent on next state (p. 66)
- Discounted vs. non-discounted
- Episodic vs. continuing
Formulating the RL problem

- Art more than science
- States, actions, rewards
- Rewards: no hints on how to solve the problem
 - Dependent on next state (p. 66)
- Discounted vs. non-discounted
- Episodic vs. continuing
- Exercises 3.4, 3.5 (p. 59)
Value functions

- Consider the week 0 environment
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
Value functions

- Consider the week 0 environment
- For some \(s \), what is \(V(s) \)?
- OK - consider the policy we ended with
- Now, for some \(s \), what is \(V(s) \)?
- Construct \(V \) in undiscounted, episodic case
Value functions

• Consider the week 0 environment
• For some \(s \), what is \(V(s) \)?
• OK - consider the policy we ended with
• Now, for some \(s \), what is \(V(s) \)?
• Construct \(V \) in undiscounted, episodic case
• Construct \(Q \) in undiscounted, episodic case
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
- Construct V in undiscounted, episodic case
- Construct Q in undiscounted, episodic case
- What if it’s discounted?
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
- Construct V in undiscounted, episodic case
- Construct Q in undiscounted, episodic case
- What if it’s discounted?
- What if it’s continuing?
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
- Construct V in undiscounted, episodic case
- Construct Q in undiscounted, episodic case
- What if it's discounted?
- What if it's continuing?
- Continuing tasks without discounting?
Value functions

• Consider the week 0 environment
• For some \(s \), what is \(V(s) \)?
• OK - consider the policy we ended with
• Now, for some \(s \), what is \(V(s) \)?
• Construct \(V \) in undiscounted, episodic case
• Construct \(Q \) in undiscounted, episodic case
• What if it’s discounted?
• What if it’s continuing?
• Continuing tasks without discounting?
• Exercises 3.10, 3.11, 3.17
Markov property

- What is it?
Markov property

- What is it?
- Does it hold in the real world?
Markov property

- What is it?

- Does it hold in the real world?
 - Are any systems "fundamentally" non-Markovian?
Markov property

• What is it?

• Does it hold in the real world?
 – Are any systems "fundamentally" non-Markovian?
 – What if there’s a time horizon?
Markov property

- What is it?

- Does it hold in the real world?
 - Are any systems "fundamentally" non-Markovian?
 - What if there’s a time horizon?

- It’s an ideal
 - Will allow us to prove properties of algorithms
Markov property

- What is it?

- Does it hold in the real world?
 - Are any systems "fundamentally" non-Markovian?
 - What if there’s a time horizon?

- It’s an ideal
 - Will allow us to prove properties of algorithms
 - Algorithms may still work when not provably correct
Markov property

• What is it?

• Does it hold in the real world?
 – Are any systems "fundamentally" non-Markovian?
 – What if there’s a time horizon?

• It’s an ideal
 – Will allow us to prove properties of algorithms
 – Algorithms may still work when not provably correct
 – Could you compensate? Do algorithms change?
Markov property

- What is it?

- Does it hold in the real world?
 - Are any systems "fundamentally" non-Markovian?
 - What if there’s a time horizon?

- It’s an ideal
 - Will allow us to prove properties of algorithms
 - Algorithms may still work when not provably correct
 - Could you compensate? Do algorithms change?
 - If not, you may want different algorithms (Monte Carlo)
Markov property

- What is it?

- Does it hold in the real world?
 - Are any systems "fundamentally" non-Markovian?
 - What if there’s a time horizon?

- It’s an ideal
 - Will allow us to prove properties of algorithms
 - Algorithms may still work when not provably correct
 - Could you compensate? Do algorithms change?
 - If not, you may want different algorithms (Monte Carlo)

- Exercise 3.6