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Logistics

• Do programming assignments!

• Not into piazza?

• Understand every step of the math

– Go back to sections 3.7 and 3.8 if need be
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Chapter 4

• Solution methods given a model

• So no exploration vs. exploitation

• Why is it called dynamic programming?
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Policy Evaluation

• V π exists and is unique if γ < 1 or termination guaranteed
for all states under policy π. (p. 90)

• Policy evaluation converges under the same conditions
(p. 91)

• Policy evaluation on the week 0 problem

− undiscounted, episodic
− Are the conditions met?
− (book slides)

• Exercises 4.1, 4.2
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Policy Improvement

• Policy improvement theorem:
∀s,Qπ(s, π′(s)) ≥ V π(s)⇒ ∀s, V π′(s) ≥ V π(s)

• (book slides)

• Polynomial time convergence (in number of states and
actions) even though mn policies.

− Ignoring effect of γ and bits to represent rewards/transitions

• What if non-Markov?

Peter Stone
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Value Iteration on Week 0 problem

• Show the new policy at each step

− Not actually to compute policy
− Break policy ties with equiprobable actions
− No stochastic transitions

• How would policy iteration proceed in comparison?

− More or fewer policy updates?
− True in general?

Peter Stone
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Chapter 4 Summary

• Chapter 4 treats bootstrapping with a model

− Next: no model and no bootstrapping
− Then: no model, but bootstrapping

Peter Stone
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Monte Carlo on week 0 task

• Episodic, undiscounted

• Equiprobable random action in start state, then prefer
right

• State values

• Action values
− Why action values preferable?

• Relationship to n-armed bandit?
− multiple situations (associative)
− nonstationary

• (book slides)

Peter Stone
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Relationship to DP

• MC doesn’t need a (full) model

− Can learn from actual or simulated experience

• DP takes advantage of a full model

− Doesn’t need any experience

• MC expense independent of number of states

• No bootstrapping in MC

− Not harmed by Markov violations

Peter Stone
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First/Every Visit

• Why is every visit trickier to analyze?

• Every visit still converges to V π

− Singh and Sutton ’96 paper
− Revisited in Chapter 7 (replacing traces)

Peter Stone
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