Guiding a Reinforcement Learner with Natural Language Advice

Initial Results in RoboCup Soccer

Gregory Kuhlmann Department of Computer Sciences University of Texas at Austin

Joint work with Peter Stone, Raymond Mooney, and Jude Shavlik

Department of Computer Sciences

Project Overview

- Human provides assistance to learning agents
- Many types of interaction possible
- Interaction:
 - Human observes agent learning to perform task by RL
 - Gives advice in natural language
 - * specifies condition and advised action
- Components:
 - 1. Translate natural language advice into formal representation
 - 2. Integrate advice into learning agent

Department of Computer Sciences

Domain: RoboCup Simulator

- Distributed: each player a separate client
- Server models dynamics and kinematics
- Clients receive sensations, send actions

- Parametric actions: dash, turn, kick, say
- Abstract, noisy sensors, hidden state
 - Hear sounds from limited distance
 - See relative distance, angle to objects ahead
- $> 10^{9^{23}}$ states
- Limited resources : stamina
- Play occurs in real time (\approx human parameters)

Department of Computer Sciences

The University of Texas at Austin

CLang

- Standardized Coach Language
 - independent of coachable player's behavior representation
- If-then rules:

```
\{condition\} \rightarrow \{action\}
```

• Example:

If our player 7 has the ball, then he should pass to player 8 or player 9

```
(definerule pass789 direc
((bowner our {7})
 (do our {7} (pass {8 9}))))
```

Department of Computer Sciences

Learning to Map NL to CLang

- Parsing NL and translating into formal language
 - Manageable with current NLP technology for restricted task
 - Labor-intensive to construct parser by hand
- Instead learn parser from input/output pairs
- Exploring several methods

Department of Computer Sciences

Task: 3 vs. 2 Keepaway

- Play in a small area ($20m \times 20m$)
- Keepers try to keep the ball
- Takers try to get the ball
- Episode:
 - Players and ball reset randomly
 - Ball starts near a keeper
 - Ends when taker gets the ball or ball goes out of bounds
- Performance measure: average episode duration

Department of Computer Sciences

Keeper's State/Action Space

- Inputs: 11 distances among players, ball, and center and 2 angles to takers along passing lane
- Actions: Basic skills from CMUnited-99 team

Department of Computer Sciences

Function Approximation: Tile Coding

Department of Computer Sciences

SMDP Sarsa(λ **)**

- Linear Sarsa(λ)
 - On-policy method: advantages over e.g. Q-learning
 - Not known to converge, but works (e.g. [Sutton, 1996])
- Only update when ball is kickable for someone: Semi-Markov Decision Process

Department of Computer Sciences

Prior Results Without Advice (Stone & Sutton, 2001)

- Results scaled up to 6 vs. 5
- Robust to limited vision, and varying field sizes and state representations.

Department of Computer Sciences

Example Advice

• If no opponents are within 8m then hold.

Department of Computer Sciences

Example Advice (contd.)

• If a teammate is in a quadrant with no opponents then pass to that teammate.

Department of Computer Sciences

Example Advice (contd.)

• If a passing lane is open then use it.

Department of Computer Sciences

Example Advice (contd.)

• Don't pass along edges.

Department of Computer Sciences

Integrating Advice

- Unchanged CMAC computes action value.
- New Advice Unit computes advice (0,+/-2)
- Values added to compute Q-value.
 - Q(s,a) = CMAC(s,a) + Advice(s,a)
- Example: hold advice
 - If no opponents are within 8m in s
 - then Q(s, hold) = CMAC(s, hold) + 2
 - else Q(s,hold) = CMAC(s,hold)

Department of Computer Sciences

Integrating Advice (contd.)

- Learner and advisor can have different state representations
- Should still be able to refine advice

Department of Computer Sciences

"Hold" Advice

Department of Computer Sciences

"Quadrant" Advice

Department of Computer Sciences

"Lane" Advice

Department of Computer Sciences

Department of Computer Sciences

Conclusion and Future Work

- Simple, intuitive high-level advice can improve learning in a challenging, dynamic task.
- Advice helps learner find better policies
- Future enhancements:
 - Combined advice produces additive effect
 - Advice speeds up learning
 - Bad advice can be unlearned
- Future work in learning English to CLang mapping

Department of Computer Sciences