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Project Overview

• Human provides assistance to learning agents

• Many types of interaction possible

• Interaction:

– Human observes agent learning to perform task by RL
– Gives advice in natural language
∗ specifies condition and advised action

• Components:

1. Translate natural language advice into formal representation
2. Integrate advice into learning agent
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Domain: RoboCup Simulator

• Distributed: each player a separate client
• Server models dynamics and kinematics
• Clients receive sensations, send actions

Client 1

Server

Client 2

Cycle t-1 t t+1 t+2

• Parametric actions: dash, turn, kick, say
• Abstract, noisy sensors, hidden state

– Hear sounds from limited distance
– See relative distance, angle to objects ahead

• > 10923
states

• Limited resources : stamina
• Play occurs in real time (≈ human parameters)
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CLang

• Standardized Coach Language

– independent of coachable player’s behavior representation

• If-then rules:
{condition}→{action}

• Example:
If our player 7 has the ball, then he should
pass to player 8 or player 9

(definerule pass789 direc
((bowner our {7})
(do our {7} (pass {8 9}))))
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Learning to Map NL to CLang

• Parsing NL and translating into formal language

– Manageable with current NLP technology for restricted task
– Labor-intensive to construct parser by hand

• Instead learn parser from input/output pairs

• Exploring several methods
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Task: 3 vs. 2 Keepaway

• Play in a small area (20m × 20m)

• Keepers try to keep the ball

• Takers try to get the ball

• Episode:

– Players and ball reset randomly
– Ball starts near a keeper
– Ends when taker gets the ball or ball goes out of bounds

• Performance measure: average episode duration
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Keeper’s State/Action Space

Teammate with ball
or can get there
faster

notBall
GetOpen()

GoToBall()

Ball 
kickable

kickable

{HoldBall(),PassBall(k)}
(k is another keeper)

• Inputs: 11 distances among players, ball, and center and
2 angles to takers along passing lane

• Actions: Basic skills from CMUnited-99 team
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Function Approximation: Tile Coding

Action
values

Full
soccer
state

Few
state

variables
(continuous)

Sparse, coarse,
tile coding

Linear
map

Huge binary feature vector
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SMDP Sarsa(λ)

• Linear Sarsa(λ)

– On-policy method: advantages over e.g. Q-learning
– Not known to converge, but works (e.g. [Sutton, 1996])

• Only update when ball is kickable for someone :
Semi-Markov Decision Process

TIME

Update:

Kick:k1 k1 k1 k2 k2 k3 k3
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Prior Results Without Advice (Stone & Sutton, 2001)

0 1 0 2 0 2 5
4

6

8

1 0

1 2

1 4

Episode
Duration
(seconds)

Hours of Training Time
(bins of 1000 episodes)

handcoded random
always
hold

• Results scaled up to 6 vs. 5
• Robust to limited vision, and varying field sizes and state

representations.
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Example Advice

• If no opponents are within 8m then hold.
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Example Advice (contd.)

• If a teammate is in a quadrant with no opponents
then pass to that teammate.
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Example Advice (contd.)

• If a passing lane is open
then use it.
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Example Advice (contd.)

X

• Don’t pass along edges.
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Integrating Advice

• Unchanged CMAC computes action value.

• New Advice Unit computes advice (0,+/-2)

• Values added to compute Q-value.

– Q(s,a) = CMAC(s,a) + Advice(s,a)

• Example: hold advice

– If no opponents are within 8m in s

– then Q(s,hold) = CMAC(s,hold) + 2

– else Q(s,hold) = CMAC(s,hold)
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Integrating Advice (contd.)

Full
soccer
state

X

Action
values

Advice Unit

State Variables CMAC Function Approximator
Keeper

+
+
+

Sum

• Learner and advisor can have different state representations
• Should still be able to refine advice
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“Hold” Advice
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“Quadrant” Advice
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“Lane” Advice
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“Edge” Advice
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Conclusion and Future Work

• Simple, intuitive high-level advice can improve learning in a
challenging, dynamic task.

• Advice helps learner find better policies

• Future enhancements:

– Combined advice produces additive effect
– Advice speeds up learning
– Bad advice can be unlearned

• Future work in learning English to CLang mapping
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