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Why are we allowed to subtract a baseline?

Expected baseline

contribution = 0 because…

…multiplied by term

with expectation 0

How does expected

return change w.r.t. prefs?

Claim: a good baseline reduces variance of gradient and improves convergence
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Original “gradients”

We are NOT subtracting

from the gradient

We are subtracting

from a number that 


multiplies the gradient


