
Suboptimality in Hierarchical RL

March 6th, 2013

CS394R Reinforcement Learning

Ruohan Zhang

Outline

• Source of suboptimality in

–Recursively optimal policy

–Hierarchically optimal policy

• Solutions have been developed

• Hierarchical optimality: the final policy is the

best policy consistent with given hierarchy.

• Recursive optimality: the final policy is

optimal given the policies learned by its

children.

• Source of suboptimality for each type?

Recall: Recursively vs. hierarchically optimal policy

Domain (Dietterich)

• Grid world, start in the

room on the left side,

the Goal is located in

the upper right corner.

• Actions:

• 2 doors

• Each action costs -1,

goal gives reward 0.

Source of suboptimality

• What if we have the subtask as

“exit by the nearest door?”

• What is the optimal policy,

for the subtask?

Source of suboptimality

• What if we have the subtask as

“exit by the nearest door?”

• What is the optimal policy,

for the subtask?

Source of suboptimality

• From the optimal policies of our subtask, we

achieve this final policy.

• Is it recursively optimal?

• Is it hierarchically optimal?

• Is it globally optimal?

Source of suboptimality

• From the optimal policies of our subtask, we

achieve this final policy.

• Is it recursively optimal?

• Is it hierarchically optimal?

• Is it optimal?

• This is a recursively optimal

policy, but not hierarchically

optimal nor globally optimal.

Source of suboptimality

• What would be a hierarchically optimal policy?

• We can always exit by upper

door.

• Is it recursively optimal?

• Is it globally optimal?

Source of suboptimality

• One question we may ask is, is hierarchically

optimal policy always optimal? What about in

our example?

Source of suboptimality

• One question we may ask is, is hierarchically

optimal policy always optimal? What about in

our example?

• If we put a “landmark” at the lower door, and

we always exit by the lower door.

• The result is clearly hierarchically optimal, but

not globally optimal.

• Hierarchical optimality: the imposed

hierarchy constrains our policy.

• Recursive optimality: the policies learned from

the subtasks are locally optimal, but we may

have better policies for parent task.

 Summary: source of suboptimality

Next…

• How do we deal with this problem?

– Ideas?

– There are helpful thoughts from our readings.

Solutions

• How do we deal with this problem?

• Approaches

• Extend option set O to include A (primitive actions)

• Redefine the reward of completing subtasks

• Non-hierarchical execution

1. Extending O to include A

• Introduce primitive actions as special cases of

options

– Recall the hallway example and experimental results

• What is the cost?

1. Extending O to include A

• Introduce primitive actions as special cases of

options

– Recall the hallway example and experimental results

• What is the cost?

– Could it be even slower than non-hierarchical

learning?

2. Redefine the subtasks
• What is the difference between subtask and

option?

– Option: <I, π, β>

– Subtask: <I, R, β>

• R: pseudo reward function.

-2

-6

2. Dynamically redefine the subtasks

• Denote the subgoal states for task i as B(i)

• Initialize V ’(s) for all states in B(i)

• Repeat:

– Define a Pseudo-reward functions

• R’(s)=V’(s), for s that are in B(i)

• 0, elsewhere

– Apply hierarchical SMDP learning method to learn

recursive optimal policy

– Update V’(s)

3. Non-hierarchical execution

• Qπ(s,a): function Q for learned hierarchical

policy π, a is an option.

• At each time step, compute a=argmaxa Qπ(s,a),

then execute one primitive action according to a.

• We might terminate an option early.

• Similar to policy improvement in policy iteration,

it always improves the policy.

3. Non-hierarchical execution

• An extreme case: what if we interrupt at every

step (polling execution)? Do we still have

advantage over non-hierarchical algorithms?

 Thank you!

